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RESUMO

O nivel de pressao sonora em ruas é uma informagao importante para o plane-
jamento urbano. Medir esta informacao através de uma rede de microfones é uma
solucao que requer a implementacao de uma nova infraestrutura, o que pode de-
mandar um investimento monetario consideravel, além da necessidade de calibragao
rotineira dos sensores. Cidades costumam ja possuir uma infraestrutura de cameras
de trafego. Tais cameras entretanto nao costumam possuir microfones. Neste tra-
balho é proposto uma solugao para avaliagao de pressao sonora em cidades utilizando
uma infraestrutura de cameras de trafego, estimando a pressao sonora a partir de
suas imagens.

Foram testados modelos de redes neurais convolucionais com arquitetura nao-
temporal e propostos modelos com arquitetura temporal (LSTM, do inglés “long
short-term memory”). Utilizando uma base de dados de 38 videos de trafego com
audio e um total de 995 minutos, foram treinados 130 variagoes de redes convolu-
cionais para fazer a predicao de valores médios do sinal de dudio a partir de imagens
do video. O desempenho das redes neurais foi avaliado em termos do erro médio
quadratico entre as suas saidas e os seus alvos, e também em termos da correlacao
entre esses sinais, fazendo uma validacao cruzada entre 10 diferentes “folds”.

Neste trabalho foi observado que as redes neurais temporais nao-causais
baseadas em LSTM obtém consistentemente resultados melhores que aquelas que
nao possuem arquitetura temporal. As redes propostas obtiveram um erro de
medicao abaixo das estudadas em trabalhos anteriores, demonstrando uma cor-
relacdo entre o sinal predito e o real de 71,3%. As redes LSTM também apresentam
um sinal de saida menos ruidoso que aquele apresentado pelas redes nao-temporais.
O uso de técnicas regularizadoras se mostra decisivo para o treinamento. A rede
convolucional testada que apresentou o melhor resultado foi a VGG16.

Foi concluido que a predicao do nivel sonoro de ruas a partir de imagens
de cameras é possivel. Foi constatado que o uso de redes classificadoras auxiliares
(como a Faster R-CNN) tém potencial para melhorar as predigoes.
Palavras-Chave: Pressao sonora, aprendizado de m&aquina, redes convolucionais,

processamento audiovisual, cidades inteligentes.
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ABSTRACT

Sound pressure level on streets is an important information for urban plan-
ning. Measurement of this information using microphones requires a new infrastruc-
ture, what may require a considerable monetary investment. Cities usually have a
CCTV (closed-circuit television) infrastructure to monitor traffic, but such cameras
do not have microphones. A solution for sound pressure inference using CCTV
cameras, estimating sound pressure on streets from traffic images, is proposed.

This work tests previously proposed non-temporal convolutional neural net-
works architectures, and compare them with a proposed temporal convolutional neu-
ral network based on LSTM (long-short therm memory) architecture. The database
used is composed of 38 videos showing a traffic intersection over different days, hours
and weather conditions, with overall length of 995 minutes. Using the images and
sound signal from such videos, training of 130 model variations are conducted in
order to predict the mean sound pressure on unseen data, using only the video im-
ages as input. Performance evaluation was made using the mean squared error and
Pearson correlation of the predicted and targeted output signals, cross validating
with 10 different folds.

It was observed that LSTM based neural networks consistently yield bet-
ter results compared to non-temporal based architectures. The proposed neural
networks had estimation errors below previously proposed networks, with a corre-
lation of 71.3% between predicted and target signals. Regularization methods were
essential during training. The convolutional neural network that yielded the best
results was the VGG16. Classification architectures such as the Faster R-CNN have
significant potential for improving prediction results.

It was concluded that traffic sound pressure prediction from CCTV camera
images is possible within an error limit. For future works, improvements such as
creating a new database with different places and better audio capture, exploring
3D convolutions, convolutional-LSTM layers, and investigating how classification
networks may further improve results are proposed.

Key-words: Sound pressure, machine learning, convolutional neural networks, au-

diovisual signal processing, smart cities.
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Chapter 1

Introduction

In this chapter, the reader is introduced to the research topic. That is, what
the object of study is, what the targeted problem is, and which methods are used
for proposing a solution. Finally, a brief explanation of the structure of this text is

given.

1.1 Theme

This research is about the estimation of noise pollution in cities. Noise pollu-
tion is a type of environment pollution caused by, among other things, road traffic,
railways, air traffic, construction sites et cetera. The increase of noise pollution
is a prominent characteristic of urbanization worldwide. Previous research efforts
show that noise pollution in cities directly impacts the physical and mental health
of citizens [1, 2, 3|, children development [4] and surrounding wild life [5]. As the
awareness about the negative effects of noise pollution arises, so does the necessity
of estimating noise levels on cities.

Studies have been conducted worldwide for estimating and monitoring sound
levels using statistical inference models [6]. Is such studies, however, manual noise
measurements are conducted, which do not translate into a real-time measurement
system. It is well known that the most important source of noise pollution in cities is
traffic [7], which is already monitored by closed-circuit television systems (CCTV).
However, such CCTV cameras usually do not have or cannot legally record audio, in

order to enforce privacy rules. This study therefore explores how image and audio



information are related in the CCTV systems, and how noise levels can be estimated

on streets using only the image information from the CCTV systems.

1.2 Delimitation

This method of noise estimation is limited, as it only accounts for noise
produced by objects present within the recorded frame. As such, this method may
not satisfactory work close to airport, railway or construction regions. Estimation of
noise from images can also be very inaccurate, specially for individual vehicles and
uncommon events. For those estimates, one should have training data acquired from
properly placed microphones. The proposed method does not, therefore, substitute
a precise and generic noise measurement system. This study aims however to predict
the average sound pressure intensity on roads and streets, under common traffic and

weather conditions.

1.3 Justification

Monitoring of noise distribution on cities allows the development of indexes
about quality of life on neighborhoods. It is an important tool for city management
and law making. It helps politicians and communities to assert the effectiveness of
laws regarding the reduction of noise in city areas. It is also an important criterion
for social and real estate development. It can be used in multi-criteria analysis, for

determining the optimal location of a new hospital, school or social housing facilities

[8].

1.4 Objectives

The general objective of this study is to expand previous research [9] on
the topic of image processing applied to CCTV systems for street noise prediction.
The specific objective is to reproduce the results from model architectures based
on still images (referred to as “non-temporal” model architectures in this work),

to introduce temporal model architectures for this problem, identify their optimal



hyperparameter configurations, and to compare them within an expanded dataset,
using cross-validation methods.

This study can be regarded as successful, because the proposed temporal
model architectures yield better prediction results than the previously proposed

non-temporal based architecture.

1.5 Methodology

To train deep-learning models for sound pressure prediction using only video
frames as an input, a dataset composed by 38 video files with an overall length of
995 minutes was used. All videos were recorded from the same place and angle,
approximately 50 meters away from the scene, in different week days, at different
morning, afternoon, and night times, and under different weather and illumination
conditions.

The sound pressure information for each frame was calculated using the cap-
tured sound as targets for our sound pressure prediction models. These videos are
divided into 10 different folds, as shown in Appendix A.

Models were then compared in terms of their mean squared error and corre-
lation coefficients, computed over all folds, between the predicted and target sound

pressure values.

1.6 Text Structure

In Chapter 2, the theoretical background behind this study is presented. This
includes concepts from the broader area of machine learning, a study of models used
in this work and some brief concepts of data analysis. The key question is: “what
are the fundamentals of our analysis?”.

In Chapter 3, the methodology used in our research is presented. This in-
cludes what data was processed, how it was processed and how evaluation was con-
ducted. The key question is: “how to apply theory in order to propose a solution
to the problem?”.

In Chapter 4, several results are presented.



Finally, in Chapter 5, this study is ended with our conclusion and some final

thoughts on future research ideas about this topic.



Chapter 2

Theory

In this chapter, the main theory points that were used in this work are dis-

cussed. It is organized in three sections:

e Theoretical Background
e Convolutional and Recurrent Neural Networks

e Data Processing

2.1 Theoretical Background

In this first section, a brief introduction to the ficld of machine learning is
presented to the reader. Topics about the basics of machine learning and neural

networks are discussed.

2.1.1 A Brief Introduction to Machine Learning

Machine learning is a subset of the wider field of artificial intelligence. It deals
with algorithms that automatically improve through experience, obtained during the
so called training process of the algorithm. Given a specific task, the training process
consists of trying to interactively improve on how to perform it. There are three

main approaches to this, which are:

e Supervised Learning



The algorithm is given a set of labeled data, and is asked to learn a general
rule between data and labels. It is similar to a “question and answer” sheet for
a test. From the known data, the algorithms learn to generalize and correctly

answer questions that have not been previously presented to them.
Unsupervised Learning
The algorithm is given a set of unlabeled data, and tries to identify gen-

eral patterns within the set. An example of unsupervised learning is data

clusterization, which consists in finding groups of similar data.
Reinforced Learning
The algorithm dynamically interacts with an environment. By interacting

with it, it learns to do what is required. For example, an algorithm that learns

to park a car.

Each of these methods is better suited to solve different problems. They

can be used independently, or together. In this work, given problem nature, the

supervised learning method was used.

2.1.2 Classification and Regression Model

In a supervised learning algorithm, it is common to use artificial neural net-

works.

Artificial neural networks are a class of computer structures inspired on bi-

ological neural networks. Although there are other proposed models whose basic

units resemble biological neurons more closely [10], artificial neural networks (for

now on, only “neural networks”) are the most widely used models. Neural network

models can be used for non-linear classification or regression.

e (lassification is the task of finding the best set of parameters to classify the
input. As an example, given pictures of cats and dogs, learning which pictures

corresponds to cats and which corresponds to dogs.



e Regression is the task of estimating the relationship between input and output.
It is used to predict and forecast possible outcomes. As an example, given a
set of points (z;,y;), training leads to an approximating function y = f(x)
that best represents these points. The simplest regression model is the linear

regression, where f(x) = ax + b.

(Classification and regression are, in fact, very similar operations. Classifica-

tion can be regarded as regression with discrete (or binary) targets.

2.1.3 Model Training in Supervised Learning

Training a neural network under a supervised learning method consists of
fitting the model to the available data.

Let T = [zo, 71, ...,20]T and § = [yo, y1, -, yar)? be, respectively, the input
and output data. The data are labeled, that is, each input x; corresponds to a target
output y;, that is, z; — y;.

The z and g elements association is called a dataset, denoted as (Z,y). Let
a model be described by a general estimation function f(.) of the input data z, and

some parameters w, so that

g =fz,w) (2.1)

is the estimated output.

The hyperparameters w are known as the weights of model f(.). Fitting the
model to the data means finding the set of weights w that better correlates input
and output data. Ideally, § = §. That is, the estimation function f(.) perfectly
defines 3 given Z. Finding such ideal weights is usually impossible. In practice,

instead of looking for ideal weights, a loss function

L(g,9) = lly — 9 (2.2)
that measures the distance between data y and estimation g is defined. This way,

finding the optimal set of weights w is equivalent to finding the global minimum

Lpnin of the loss function L(.)



Finding L,,;, is a hard, non-trivial task. Local minima can however be found
with gradient descent algorithms. A gradient descent consists of calculating the

sequence

wn—l—l = Wy — ’YVL(Q» f(j7 wn))? (24)

where V is the gradient operator

(2.5)

Vh(ao,al, ...,aN) = < Oh Oh Oh >

Bay’ dar’" Ban

The parameter 7 is called learning rate. It defines the algorithm convergence
rate. Larger v leads to faster minimization, but also a larger convergence instability.
Given a small enough ~, the sequence L(y,Z,wy), L(y, T, @), ... is monotonically
decreasing. The loss function is therefore minimized in the neighborhood of the
initial w.

If the dataset is very large, then calculating the gradient for the entire dataset
can be very demanding, and so the gradient descent algorithm becomes too costly.
Instead, enhanced methods are used. These enhanced methods calculate the gradi-
ent by sampling the dataset in smaller partitions called “batches”. Each batch con-
tains a subset of the entire dataset. Sampled data are not repeated among batches.

Letting (zp,yp) be the sampled data, some examples of enhanced methods are:

e Stochastic Gradient Descent (SGD)

This is the gradient descent algorithm applied in batches.
U_)n—i-l = Wy, — VVL(ZJB? f('fBU U_)n)) (26)

e SGD with Momentum

This is the SGD algorithm, but the gradient is filtered with a moving average
filter (see Section 2.3.2).

'(Dn+1 = ’(Dn — YVn+1 (27)

Vi1 = Bvn + (1 = B)VL(ys, f(Zp, ¥n)) (2.8)



Here, 8 € [0,1) is a filter constant (momentum hyperparameter), and v, can
be seen as the “mean gradient”. SGD with momentum helps to filter the

gradient noise over successive batches.

e Adaptive Moment Estimation (Adam)

This is a combination of the SGD with momentum and RMSprop ! algorithms.
It uses two momentum variables: v is the moving average filter of the gradient

(mean gradient), and the scalar ¢ is the variance estimate of the gradient.

D1 = Wn = Va1 © (Guyr + €)1/ (2.9)
Vst = Bivn + (1 — B1)V Lp(,,) (2.10)

Gt = Pl + (1 = 52)[VLp(wn) © VLp(wn)] (2.11)
Lp(w,) = L(yp, (T, wn)) (2.12)

Here, (1,02 € [0,1) are filter constants (momentum hyperparameters). The
scalar € > 0 is a very small constant, to prevent division by zero. The symbol

® denotes the Hadamard product (point-wise product).

Because of hardware implementation, the batch size in enhanced methods is
usually chosen to be a power of 2. Gradient is then estimated from all batches. An
epoch ends when every batch in the dataset has been processed.

Using these gradient descent based methods, the minimization of the loss
function L(.) is conducted over the dataset (Z,y). The model is however expected
to perform well on any given, not previously seen, dataset. To evaluate how the

model performs on unseen data, the dataset is usually separated into two parts:

e Training Data

Data actively used in the optimization algorithm. Models are fit to the

training data.

e Testing Data

Proposed by Geoffrey Hilton in his class “Neural Networks for Machine Learning” [11]



Data not used by the optimization algorithm. Those data are used only for

evaluating how the model is performing on untrained data.

Another common procedure when evaluating the model is fitting the model
on different folds. A fold is a set of training and test data. The idea is that training
and test data vary among the different folds. Evaluating the performance of the
model on different folds makes the evaluation less dependent on data.

An overview of the training and evaluation process can be seen on Figure 2.1.

Qutput
| f|—Y Y
Training \l \L
/I\ L Gradient Descent
- = A
WN Y

Training

WN4+1 <

(a) Hlustration of training process.

T—| f |— 9

Testing

pN
L Evaluate
B _ 7
wN Te.gn_g

(b) Tlustration of evaluation process.

Figure 2.1: Figure shows: (a) illustration of training process; (b) illustration of

evaluation process.
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2.2 Convolutional and Recurrent Neural Networks

In this section, the concepts of convolutions and recurrent layers on neural
networks are introduced, that is, the base models used in this work and the basics

of their internal design.

2.2.1 VGG16

The VGGI16 is a deep convolutional neural network structure proposed by
Karen Simonyan and Andrew Zisserman [12]. The acronym VGG stands for “Visual
Geometry Group Laboratory”, Oxford University. It was the laboratory entry for
the 2014 “ImageNet large scale visual recognition challenge” (ILSVRC2014)

The ILSVRC 2014 was a contest that aimed to “evaluate algorithms for
object detection and image classification at large scale” [13]. Teams competed in

two categories:

e To detect objects from 200 different categories within an image, on fully labeled

data (called “object localization”).

e To classify images from 1000 different possible labels (called “image classifica-

tion”).

The proposed VGG model became known for winning first place in the lo-
calization challenge, and attaining second place in the classification one. It consists
of consecutive stacked 3x3 convolutions and pooling layers over the image, followed

by three fully connected (FC) layers.

1. Convolution

A convolution is a linear operator. Given an input signal input(z) and a
filter filter(z), it produces a filtered version output(z) = input(z) ® filter(x)
of the signal in its output. The given signal can be, for example, an audio
signal or an image. In the case of images, the convolution operation is applied
between matrices, as follows: let the following 8 x8 and 3x3 matrices in Figure

2.2 be, respectively, an example image and filter, also known as “kernel filter”

11



or only “kernel”. In a graphical sense, the matrix can be regarded as an
eight-bit 8x8 gray-scale image, where 0 represents black and 255 represents

white.

0.1]0.1]0.1
0.1] 0 (0.1

0.1{-0.1{0.1

Figure 2.2: Convolution of an 8x8 gray-scale image and a 3x3 kernel filter.

The convolution process consists of adding each element of the image to its
neighbors, weighing the element and its neighbors by the kernel values. As the
edge of the image does not have neighbors along all directions, it is usually
ignored. In that case, the output image is smaller then the input image, as
shown in Figure 2.3.

(0.1*255) + (0.1*255) + (0.1*255) + (0.1*255) +
(0*255) + (0.1*0) + (0.1*255) + (-0.1*0) + (0.1*0)

=275

Figure 2.3: The convolution of an 8x8 image and a 3x3 kernel results in a 6x6
image, as both the first and last rows/columns of the input image cannot be calcu-

lated.
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The operation is then continuously applied to each element of the image

until all elements have been calculated, as depicted in Figure 2.4.

|
55 i

2

Figure 2.4: In a low resolution image, the loss of two columns and rows is noticeable.
When the input is larger, however, this is not a problem. The VGGI16 is trained in

color images of tensor shape 224x224x3.

Examples of the application of other 3x3 kernels are shown in Figure 2.5.

[ 0 -01 o0
l—0.1 0.5 -0.1

Wi w
[=Na=Na]

—
[=N=2=]
coco

| (S TE— ¢

Figure 2.5: Examples of other 3x3 kernels applied to the same 88 original image.

Convolutions can be used to, among other things, sharpen colors, detect

edges, and blur the image.
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2. Pooling

A pooling layer is an important building block of a neural network. It
reduces the number of parameters in the network, in order to simplify compu-

tation. Without it, research in the Al fields would be considerably harder.

The pooling operation consists of, given a pixel window, choosing one pixel
as an output. Similarly to the convolution process, this pixel window slides
over all pixels. The pooling operation used in the VGG16 architecture is the

“max pooling”.
The max pooling operation occurs by choosing the largest pixel value within

the pixel window. In the VGG16, a 2x2 pixel window is used. This results in
an output 1/4 the input size, as illustrated in Figure 2.6.

14
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15(16|54] 2 | 34| 35|47| 56
56|45]1862[78|42(20] 13|

35|99

45|21 6 | 56(15]98]78]35
86|51(23142] 1|12/ 5 |32

35]26]|15[99] 0 [14|9 |50
12| 7 20| 17|42| 69| 23|18

Max pooling output

15]15]16|25(34|47| 2 |14 35]99]69[50
15|16|54] 2 | 34| 35|47|56 16|54 [47]56
56|45|1862|78|42]20] 13 65162 [78]20
5 |65(45]12[42]32] 15|14 86]56]98]78

45|21 6 | 56|15]98|78 |35
86|51(23142] 1 |12 5 |32
MAX

Figure 2.6: The VGG16 architecture uses a 2x2 max pooling with stride 2. It

reduces the output to 1/4 the input size.

Some other pooling operation are: the average pooling (chooses the average
number in the window); the global max pooling (chooses the largest number
in the entire input matrix. This transforms the entire matrix into a single
number); and the global average pooling (chooses the mean of the entire input

matrix. This transforms the entire matrix into a single number).
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The overall architecture of the VGG16 is shown in Figure 2.7.

VGG16 architecture

[] convolution +Relu

D Max Pooling
[] Fully connected + ReLu

. Softmax

s SE I S

Feature extractor Fully Connected Layers

Figure 2.7: The VGG16 structure is composed of two parts: the convolution part,
also called feature extractor; and the fully connected part, also called classifier (see

Section 2.2.5).

2.2.2 ResNet50

The ResNet50 is a network proposed by Kaiming He, Xiangyu Zhang, Shao-
qing Ren and Jian Sun from Microsoft Research. It took part on the “ILSVRC
and COCO 2015” competitions, where it won first place on the ImageNet detection,
ImageNet localization, COCO detection and COCO segmentation [14].

ResNet stands for “residual network”. A residual network has, in addition
to its convolutional /pooling consecutive layers, direct information paths between its
building blocks, as depicted in Figure 2.8. In this way, the basic building block
initially implement identity maps, and they are able to learn the difference between
those identity maps and the operations that they must perform. In the original
paper “Deep Residual Learning for Image Recognition” [14], it is hypothesised that
these direct information paths can make the learning process easier in the case of
functions closer to identity maps. It also mitigates the problem of gradient infor-
mation degradation throughout the stacked layers. Training the residual network is

called “residual learning”.
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Non-Residual Network Residual Network

A

:E%feﬁy

= [ w) y=f@,w)+z
Figure 2.8: In a residual network, output y = f(z,w) + z. It is hypothesized that

training f(z,w) = ¢ — x is an easier task than training f(z,w) = 7.

The ResNeth0 architecture follows the same principle as the “34-layer resid-

ual” architecture described in the original paper [14], but its depth is extended to
50 layers.
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3x3 cony, 256, /2
3x3 cony, 256
3x3 conv, 256
3x3 cony, 256
3x3 cony, 256
3x3 conv, 256
3x3 conv, 256
3x3 cony, 256
3x3 cony, 256
3x3 cony, 256

3x3 cony, 256

3x3 cony, 256

3x3 conv, 512, /2
FC 1000

3x3 cony, 512
3x3 cony, 512
3x3 cony, 512

3x3 cony, 512
3x3 cony, 512
avg pooling

Figure 2.9: ResNet34 architecture. The ResNet50 network follows the same principle
as the ResNet34, but its depth is extended to 50 layers.
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2.2.3 Inception-V3

Since the appearance of AlexNet [15] in the ImageNet contest 2012, convolu-
tional neural networks have become better at correctly classifying images. VGG16
as well as other models have shown great results in terms of classification accuracy.
These models however have become larger and very computationally expensive.

Aiming at mobile market possibilities, the Inception-V3 is a network pro-
posed by Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens and Zbig-
niew Wojna, from Google. It was made to be computationally efficient, while not
compromising its performance. Using a reduced number of parameters, factorized
convolutions and some aggressive regularization methods, it introduced substantial
gains over the previous state-of-the-art networks [16].

With this objective, the Inception-V3 applies the following techniques:

e Factorizing Operations into Smaller Convolutions

Inception-V3 focuses on having smaller convolution kernel sizes rather than
larger ones. This reduces the number of trainable parameters and leads to
faster training. This is done by factorizing large kernels into stacked smaller
ones. For example, one 5x5 convolution kernel is replaced by two 3x3 con-
volutions, thus reducing the respective number of trainable parameters from
25 to 18. Factorized convolutions have already been shown to outperform

traditional convolutions on performance/complexity ratio [17].

e Asymmetric Convolutions

Replacing a full 3x3 convolution by a combination of 3x1 and 1x3 convolu-
tion accelerates network evaluation considerably. This has little impact on the
model performance [18]. This way, a 3x3 asymmetric convolution has slightly
fewer parameters than two stacked 2x2 convolutions, while performing better.
In fact, any n x n convolution can be made with a 1 x n and n x 1 operations,
but this have shown to affect the models performance on carly convolution

layers, thus being used only at later stages.

e Auxiliary Classifier
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Auxiliary classifiers were introduced in the first Inception paper as a method
for improving training convergence in very deep networks. They were therefore
initially used in the Inception-V3 with the same objective, but ended up acting

as a regularization method.

e Grid Size Reduction

Grid size reduction is usually done by a convolution followed by a pooling
operation. In this way, the cost of processing is predominantly the cost of
the convolution. The Inception-V3 proposes a new, more efficient way of
reducing the number of parameters, by mixing smaller pooling and convolution

operations into one layer.

The Inception-V3 overall architecture is shown in Figure 2.10.

Grid size reduction

© convolution

I Max Pooling

I Average Pooling
P Concatenate

O softmax

O Dropout

@ Fully connected

Figure 2.10: Inception-V3 overall architecture.

2.2.4 Long Short-term Memory

A basic neural network typically maps an input obtained at a specific time
into an output referring to that same time instant. It traditionally does not use data
from previous time instants in order to generate its current output, i.e. its output
referring to the present time instant. Some problems however are intrinsically time
dependent. For example, when trying to translate a sentence, the neural network
must consider previous words in order to predict the next one, as illustrated in

Figure 2.11.
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I love you ——3 Eute amo =P FETY

Figure 2.11: Translation is a heavily time and context dependent process. Translat-

ing word by word is not an option.

Recurrent neural networks are a type of neural network especially designed
to process time dependence. Their main characteristic lies in having an internal
loop that allows previous information to be represented and to remain available for

computation (Figure 2.12).

=
zt] - f | ol
[

Figure 2.12: RNNs have an internal loop that allows information to be represented

and to remain available for computation. This way they can be used to process

temporal information.

Figure 2.13 shows the loop unrolling and how time is handled more clearly.

RNN loop unrolling

[~ e[|~

Figure 2.13: RNNs loop unrolled for each time step. It is clear that information at

t = 0 affects output at t = 2.
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Classical RNNs have trouble retaining information for long sequences [19].

This can be a problem if the output depends on information from the distant past.

The long short-term memory (short LSTM) is a recurrent neural network cell pro-

posed by Sepp Hochreiter and Jiirgen Schmidhuber in 1997 [20]. Tt addresses the

problem of learning from long sequences, having no problem in retaining informa-

tion. It is widely used today as a building block in neural networks that handle

temporal structures within the data.

The internal structure of an LSTM is not composed by a unique weight layer,

but by four (Figure 2.14). Each layer plays a special role on the LSTM processing.

Mathematically, the LSTM structure is described as:

f[t] = Sig(Wff[t] + Ufﬁ[t — 1] + l_)f)

ilt] = sig(Wizlt] + Uit — 1] + b;)

ot] = sig(W,z[t] + U,h[t — 1] + b,)

¢, [t] = tanh(W,z[t] + Uh[t — 1] + b.)

ot = flitloelt — 1] +i; © &[t]

where:
T eR?
feRr
i€ R
oeR"
h € RY
c. € R*
ceR*
W e Ruxd
U e R
bec R
d
u
519
tanh

hlt] = o[t] ® tanh(c[t])

input vector of LSTM
forget gate activation vector
input gate activation vector
output gate activation vector
hidden state output vector
cell input activation vector
cell activation vector
input weight matrix
hidden state weight matrix
bias vector
input vector size
number of LSTM hidden units

sigmoid activation function

hyperbolic tangent activation function
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LSTM block

Figure 2.14: LSTM cell structure.

Looking at the LSTM as a black box:
e LSTM input is the vector Z[t].
e LSTM output is the vector h[t].

e State information for the next time instant is passed through the output vector

h[t] and through the cell activation vector ¢[t].

2.2.5 Transfer Learning

A model optimized on a task can often be used in another task, if the dataset
for the new task is related to the original one. This is called transfer learning, and
it corresponds to the idea that an already optimized model can be applied to other
tasks with little change. Usually, the original task is optimized over a big dataset,
and the model for the new task can benefit from the previous model generalization.

In the case of image processing with CNNs, basic models can be divided into

two parts:

e Feature Extractor
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This is the part where convolution and pooling layers are present. As the
name suggests, it extract features from the images. Features can be under-
stood as a denser, lower-dimensional space representation of the image original

information.

e Fully-connected Layers (FC)

The FC layers (two of them are shown in Figure 2.15) are where the image
information is mainly classified or regressed. They are the last layers (i.e. the
layers closest to the output) in the models presented in Sections 2.2.1, 2.2.2

and 2.2.3.

Figure 2.15: Example of FC layer structure.

On CNN based models, it is usual to transfer the feature extractor part to the
new model, and train only the last FC layers on the new task. This way, it is possible
to save time and resources not training the feature extractor, and benefit from the
broader dataset it was trained upon. It also expands the possibilities of research on
lower hardware, as training the feature extractor demands a considerably amount

of memory and GPU power.

2.3 Data Processing

Until now, a brief review about machine learning, some basic training algo-

rithms, some commonly used convolutional and recurrent neural networks, and the
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concept of transfer learning were discussed. In this section, a brief review of data

processing is discussed. Processing is done before and after the training process.

2.3.1 Pre-Processing: Data Normalization

It is important to normalize the data before training takes place. Normal-
ized data are handled by the network more easily, and they yield better training
outcomes. There are some different forms of data normalization. The data stan-
dardization (Z-scorc normalization) was used in this rescarch. For a random datasct,
one can usually assume it to be drawn from a probability density function that is

approximately Gaussian:

1 2 /6 2
Plz) = ——¢ @w?/2* 2.19
(@) =~ (219

where p is the mean and o is the standard deviation of the probability density
function. Normalizing and standardizing a Gaussian distribution function means
setting u = 0 and o = 1. This process is done by subtracting the dataset mean
from all data arrays, and then dividing the resulting arrays by the dataset standard
deviation, as illustrated in Figure 2.16.

i o

L=30=2 pn=0ho=2 p=00=1

Figure 2.16: Process of Gaussian normalization.

Dataset mean and standard deviation are respectively calculated as:

N
1y = valx (2.20)

_ Zz]\il(x’l — j1)?
o= \/ 15 (2.21)

Normalizing the dataset is specially important when using a transfer learning

approach. Because weights that were optimized for another dataset are used, having
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the dataset mean and standard deviation equal to those of the optimized dataset
usually yields better results.
In the case of 3-channel image datasets (dataset with color images), normal-

ization is usually independent for each color channel.

2.3.2 Post-Processing: Moving Average and Correlation Co-

efficient

When evaluating regression results, it is interesting to filter the neural net-
work outputs in order to compute a temporal average of the output sequence. A
simple filter that can be used for this is the moving average filter. The moving

average filter outputs the average of the T' previous outputs:

=
yln| ==Y x[n—k. (2.22)
T
k=0
For example, for T' = 4:
1
y[n] = Z(:c[n]—l—x[n— 1] + z[n — 2] + z[n — 3)). (2.23)
The Z transform of such filter is:
1 .
Y(z) =01+ 2+ 277+ 270X (2). (2.24)
Or more generically:
_Y() 1y
H@_X@_L;;. (2.25)

By setting |z| = 1 and substituting 2= = e7/“* we can see that the moving

average is a low-pass filter. For example, using T' = 2:

H@w)=;u+@ﬂﬂ. (2.26)

Applying Euler’s formula for e/ = cosf + jsinf and |z| = /R(2)2 + I(2)2,

the modulus of function H(z) is found, as seen in Equation 2.27 and Figure 2.17.

|H@WH:;Jﬂ+aMMF+$MM? (2.27)
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Figure 2.17: Moving average frequency response for L = 2. Graph of w — |H (/).

For the maximum frequency w =, |H (/)| = 0.

The moving average is used as a low-pass filter for data smoothing.

For comparing how much two random variables (the average output value and
the target sound pressure, in our case) are related, the Pearson correlation coefficient
(from now on, correlation coefficient) is used. The correlation coefficient p ranges
from —1 to 1. Correlation coefficient equals to 0 means the two variables are totally
uncorrelated (there is no relationship between then). Correlation coefficient equal
to 1 means they are totally correlated, and -1 totally inversely correlated.

Correlation cocfficient between random variables X and Y is given by:

Cov(X,Y)

Pxy = — - (2.28)
0x0y

Where Cov(X,Y) is the covariance between the random variables X and Y

1 N

Cov(X,Y) = NZ(%' — px)(Yi — by )- (2.29)

=0

The mean squared error (MSE) is defined as

N

1 .

v Y- 1) (2.30)
i=1

where N is the length of the sequence; Y; is the target output; and g; is the predicted
output.
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Chapter 3

Methodology

In this chapter, the methodology used in this work is presented. This includes
the dataset that is used, how it is processed, and the networks that are developed
and evaluated on this work.

All code in this research was executed on “Febe”, which is the deep learning
computer server from the Digital and Analog Signal Processing Laboratory (PADS).
It is composed of a 6 core/12 thread Intel® Core™i7-6850K CPU @ 3.60 GHz, 64
GB of RAM, and four 28 core, 10.92 GB GeForce GTX 1080 Ti @ 1.582 GHz GPUs.
We use TensorFlow 2.1.0 back-end with Keras and CUDA 10.1.

3.1 Structure and Implementation

In this first section, the methodology proposed in this research is described.

3.1.1 Dataset Generation

The problem in this research consists of predicting the output sound pressure
level of a traffic scene, using only visual information (a single image or an image
sequence) as an input. In this application, traffic scenes are restricted to street
videos captured from a single point of view.

To train deep-learning models for sound pressure prediction using only video
frames as input, a dataset composed by 38 video files with an overall length of
995 minutes was used. All videos were recorded from the same place and angle,

approximately 50 meters away from the are where the traffic noise is supposed to
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be predicted, in different week days, at different morning, afternoon, and night
times, and under different weather and illumination conditions. This dataset is an
expanded version of the one used on [9], in which it was used 10 videos with overall

length of 203 minutes. Detailed list of videos can be seen in Table 3.1.

Table 3.1: Detailed list of videos in the available dataset.

# Video Name Length (min) Time of Day Traffic Rain
0  M2U00001 20:12 Morning MNormal Mo
1  M2Uo0002 21:12 Morning MNormal No
2 M2uo00o3 22:34 Morning Mormal Mo
3 mM2uoooo4 12:11 Morning Mormal Mo
4 M2U00005 21:35 Night Mormal No
5 M2UO00006 21:11 Night Mormal No
6 M2U00007 22:20 Night Mormal Mo
7 M2U00008 21:49 Might Mormal Mo
8 M2uooo12 20:14 Morning Intense Mo
9 M2U00014 20:37 Morning Intense Mo
10 M2U00017 33:03 Maorning Light MNo
11 M2U00015 23:13 Morning Light Mo
12 M2U00016 30:26 Morning Light No
13 M2U00018 23:18 Night Mormal No
14 M20U00019 21:32 Night Mormal Mo
15 M2U00022 25:54 Morning Light Mo
16 M2U00023 30:18 Night Mormal No
17 M2U00024 38:10 Night Light Mo
18 M2U00025 33:06 Sunrise Mo
19 M2U00026 25:39 Morning Mormal Mo
20 M2U00027 39:15 Night Yes
21 M2U00029 30:11 Morning Yes
22 M2U00030 25:16 Maorning Light Yes
23 M2U00031 24:06 Morning Light Yes
24 M2U00032 25:45 Morning Light Yes
25  M2U00033 29:23 Morning Light MNo
26 M2U00035 29:02 Night Light MNo
27 M2U00036 21:02 Morning Mormal Mo
28 M2U00037 26:21 Morning MNormal No
29  M2U00039 20:16 Morning MNormal No
30 M2U00041 30:14 Morning Intense Mo
31 mM2Uo0042 36:33 Sunset  Intense Mo
32 M2U00043 21:53 Morning MNormal Mo
33 M2U00045 25:59 Morning MNormal No
34 M2U00046 20:22 Night Light Yes
35 M2U00047 20:07 Night Light Yes
36 M2U00043 28:50 Morning Light MNo
37 M2U00050 52:22 Morning Light MNo

From each video, both audio and visual information are extracted. Audio
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information is extracted at 48000 samples/second.

Visual information consists of frames that were extracted from all videos.
The frame extracting process consisted of resizing the videos, and down-sampling
the output frames. Video resizing was initially done using the ffmpeg program,
as described in [9]. This program however introduced compression artifacts that
degraded the final image quality. Resizing and images extraction was then con-
ducted using the python library OpenCV. Frames were resized from “720x480” to
“224x224” pixels. All frames in each video were extracted and downsampled by a
factor of 1/10. This way, the time interval between subsequent extracted frames is
approximately 1/3 of a second (3 frames = 1 second). Overall extracting process is

depicted in Figure 3.1.

Pre-processing

Model Input

Frames Extraction

VIDEOFILE.MPG

Sound Extraction

Pre-processing

Model Target

‘ Y N v

Figure 3.1: Video extraction process.

3.1.2 Data Pre-Processing

Input data pre-processing consists of normalizing the extracted video frames
using the mean and standard deviation, as described in Section 2.3.1. Normaliza-
tion has to be applied independently for different folds, because they have different
combinations of videos. For that reason, the input data is normalized only when

building each fold (details are given in Section 3.1.3). Normalization is applied
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independently for each color channel.

After extracting the audio from video, the sound pressure is calculated as:

(i+1)M
. 1 .
Sii] = In U Z I?[k] | ,where S; is the sound pressure, (3.1)
k=iM
M= number of audio samples on vi(%eo and (3.2)
number of extracted frames on video
I[k] = Audio sample at k (3.3)

The expression in Equation 3.1 is non-causal. For the computation of the
present sound pressure sample, it requires storage of the future M audio samples,
which does not create any problem for offline training. For online training or online
evaluation, non-causality would lead to a minor delay (around half the 1/3 second
between successive frames) in the neural network output evaluation instant, with
respect to the present time instant. This calculation, illustrated in Figure 3.2, is done

using the scientific python library numpy, specially optimized for matrix operations.

Frame 1 Frame 2 Frame3

Audio samples

Sound pressure

Figure 3.2: Sound pressure calculation.

The last output pre-processing stage consists of transforming the stereo audio
file into a mono audio file, if necessary, by adding both channels and dividing the

result by two. Normalizing the sound pressure (target) sequences for zero mean and
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unitary standard deviation did not improve training results, so the target sequences

are used without any normalization.

3.1.3 Fold Generation

Fold generation process consists of using parts of the available dataset to
create smaller datasets with different video combinations for training and test. The
38 videos were divided into 10 different folds, as seen in Appendix A.

Folds arc diversified by selecting the videos based on their characteristics,
specially daytime, while trying to maintain all folds with approximately 25% of test
data, based on the length of each video. This corresponds to roughly 11 to 12 hours
of training data and 3.5 to 4.5 hours of test data. Videos number 30 and 31 present
the model with an adverse situation, with an accident at the intersection, causing
an uncommon traffic behaviour. Those two videos were included only in the two
last folds.

Normalization of input images occurs when each the data files for each fold
are created. For this, calculation of the individual mean and standard deviation
values for each video in the dataset separately is first executed. This can be done
using the scientific python library numpy. With these individual values, the mean
and standard deviation values for the fold can be calculated using the previously

calculated values, as

> videos (Huvideo X videoLength)

old — - y 3.4
Hyotd Y videos VideoLength (34)
th - t2 tn
O fold = (t_“‘l)/, where (3.5)
tn = Z videoLength, (3.6)
videos
t, = Z (fvideo X videoLength), and (3.7)
videos
‘ (fvideo X videoLength)?

tow = Z deoLength — 1 :

Z (U”Zde"(m coreng )+ videoLength (38)

videos

and normalize the fold with those values. This procedure is useful for saving hard-

ware resources, as each video can be processed separately. Calculating mean and
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standard deviation using all videos at once requires an unnecessary amount of mem-
ory (in this case, about 108 GB of memory). This way, u and o can be calculated

for each video separately, and the fold statistics calculated later on.

all videos
us and os

calculate

images
pando .

images

extract frames,

downsample,
resize

images
(model input)

images

21BU1EIU0D
azijewlou

- images

video file g
extract audio
and calculate
sound pressure

targets

targets
(model output)

targets
- model

output

21eu21eJU0d

targets

targets

(a) (b)

Figure 3.3: Data generation: (a) how a single video is processed. In this stage,

three files are generated, containing the images, targets and the videos mean and
standard deviation; (b) how the models input and output files are generated. All
video images are concatenated and normalized into a single file. Targets are also

concatenated, but are not normalized.

This process in Figure 3.3 generates two files for each fold: one for input
data and one for output data. Input file consists of a tensor of shape: “number
of frames” x224x224x3. The first index of this tensor refers to the frames of the
dataset. Output file consists of a vector of shape number of framesx 1. Each position
of the frame at the same (“number of frames”) time index.

The final generated fold files are considerably larger than the original video
files, because when normalizing input frames, files are converted into a 32-bit float
representation. This causes each fold input file to have size up to 100 GB. Files
of this size are hardly manageable on the computer (see page 27), and they would
rapidly occupy all free disk space. Files of this size also lead to slow training,
requiring much more computer power than there is usually available.

To handle this problem, transfer learning concepts presented in Section 2.2.5
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are applied. Using the downloaded VGG16, ResNet50 and Inception-V3 models pre-
trained on the ImageNet dataset, features from all the input data were extracted

before training. After a final pooling layer, this reduces the size of the training and

test sets to 1.3% (ResNet50, InceptionV3) and 0.3% (VGG16) of their original size.

3.2 Models

In this section, the models featured in this research are described.

3.2.1 Base Models

Base models are divided in LSTM based architectures and non-LSTM based
architectures. Both models use transfer learning, with features extractors trained

upon the ImageNet dataset.

3.2.2 Non-LSTM based models

The non-LSTM based models are the simplest. Two architectures are tested,

with and without a non-linear hidden layer. Basic models are shown in Figure 3.4.

Non-LSTM Based Models

With non-linear hidden-FC Layer Without non-linear hidden-FC Layer
Image Input | ‘ Image Input
Feature extractor Feature extractor

Pooling Layer Pooling Layer

Non-Linear FC Layer Linear FC Layer
Linear FC Layer

Audio Pressure Output

Audio Pressure Qutput

Figure 3.4: Non-LSTM based models.



In regards to each layer, we considered the following different configurations:
e Feature extractor: VGG16, ResNet50 and InceptionV3.
e Pooling layer: global max pooling (GMP) and global average pooling (GAP).

e Non-linear FC layer: activation (relu or tanh) and regularization (L2 or none).

3.2.3 LSTM Based Models

LSTM based models are a modification of the non-LSTM, based on the work
done by Carreira, Zisserman [21] on LSTM for image networks. Four variations of
LSTM network are tested, with and without a non-lincar hidden layer, and with
LSTM models before or after the FC layers. Basic architectures are shown in Figure
3.5.

Dataset loading to the LSTM requires some special attention. A frame win-
dow of length N is used to load the dataset into the model. This window is slided
frame by frame, and consider either the last frames output sound pressure (called
causal prediction) or the middle’s output sound pressure (called non-causal predic-
tion), as seen on Figure 3.6. When sliding this window, one must not use frames

from different videos on the same window.

Dataset loading

Non-LSTM LSTM (causal) LSTM (non-causal)
Frame || Frame | | Frame || Frame | | Frame Frame | | Frame || Frame || Frame | | Frame Frame | [ Frame | | Frame || Frame | | Frame
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
L 1 J i 1 ] ;
| ] L
[outo || out1 || outz || out3 || out4 | [out2 || out3 || outs | [out1|[out2 || out3 |

Figure 3.6: Dataset loading.

In regards to each layer and dataset loading, the following different configu-

rations are considered:
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LSTM Based Models
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Figure 3.5: LSTM based models.



Feature extractor: VGG16, ResNet50 and InceptionVa3.

Pooling layer: global max pooling (GMP) and global average pooling (GAP).

Non-linear FC layer: activation (relu or tanh) and regularization (L2 or none).

LSTM layer: dropout (0% or 20%), number of frames (9, 17 or 32) and state-

fulness (stateful or stateless).

Dataset loading: different window sizes and causality of output.

Despite the overwhelming number of hyperparameters and possible combi-
nations, not all possible configurations are tested, as it would require a considerable
and unnecessary amount of time and resources (over 6 months of processing on
Febe (see Page 27)). Instead, a smaller test was conducted in order to choose which

hyperparameters were the most relevant to the research (refer to Section 4.1).

3.2.4 Models with Auxiliary Inputs

As a last model, an experiment using a simple auxiliary input on the base
model was conducted, similarly to the optical flow input shown in [21]. Faster
R-CNN extracted features from each frame were used as an auxiliary input. The
extractor was trained over the Microsoft COCO dataset [22]. Features include a list
of identified objects, object class, confidence score and bounding boxes coordinates.

Models architecture can be seen in Figure 3.7.
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Auxiliary Input Models

Auxiliary input model without LSTM Auxiliary input model with LSTM
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<;III

Audio Pressure Output Audio Pressure Output

Figure 3.7: Auxiliary input models.

Processing of these features consisted of ignoring identified objects with confi-
dence score bellow 70%, and excluding objects considered irrelevant and/or misiden-
tifications. Example of misidentified objects are “fork”, “tv” and “wine glass”. After

[13

this, only 6 categories were deemed relevant: “car”, “person”, “bicycle”, “motorcy-
cle”, “truck” and “bus”.

Two different tensor representations of this information were considered, as
seen in Figure 3.8.

First representation consider a mixture of all information extracted from the
Faster R-CNN network. This representation was called as “one-hot representation”.
Each image has a matrix of features. Each line contains a feature with score, area
of the bounding box and a one-hot representation of the class. It was decided that
each image can have at most 20 different features.

Second and simpler representation consists of a vector counting the number
of objects identified per image. This representation was called “counting repre-

sentation”. It has the advantage of being generally less sparse than the “one-hot

representation”. Despite of that, it still has many zeros, as not every image has



every class.

FasterRCNN features input tensor

Confidence score Bounding box \/area One-hot representation of class.
1

'0.98953956  23.94953605 1 0 0 0 0O O

0.98685384 50.0649384 0 1 0 O O O

0.97551459 634336631 1 0 0 0 O O

0.96638763 68.59607151 0 1 0 0 0 0

0.96328473 87.26115578 0 1 0 0 0 O

0.96253842 92910942 0 1 0 0 0 O

Numberof classes found 0.95176733 92.78117678 1 0 0 0 0 O

g 0.92872262 5212447963 1 0 0 0 0 O

8 0.92258745 116.07876759 0 1 0 0 0 O

T 0 0.89986265 86.64899303 1 0 0 0 0 O
: 0 0.89537615 33.96298462 0 1 0 0 0 0
- o 0 0.8709178 7543033849 1 0 0 0 0 O
L ¥ ,‘F 0 0.85080636 83.12703516 0 1 0 0 0 0
‘ - 0.83461535 93.30179303 1 0 0 0 0 O
Image 44 from video #9 0.77655655 46.48580677 1 0 0 0 0 0
Counting representation 0.71065944 17.28292489 0 1 0 0 0 O

0 0 00 000 0

0 0 00 00 00

0 0 00 00 00

0 0 00 00 0 0

One-hot representation

Figure 3.8: Faster R-CNN features tensor.

3.3 Model Evaluation

Data evaluation was briefly mentioned in Section 2.3.2. Two figures of merit
were used in order to classify the models: the mean correlation between folds and the
mean MSE between folds. Both these figures are calculated between the predicted
models output and its correspondent datasets target output. The lower the MSE
and the higher the correlation, the better is the model.

Using the mean MSE and correlation between folds allows to mitigate par-
ticularities on each dataset, having a better understanding of the architectures per-

formance on general data.
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Chapter 4

Results

In this chapter, results from all our training sessions are reported. Training

sessions were divided into three sections:

e Hyperparameter Choise

A variety of models are first trained over one unique fold. In this training
session, the aim is to reduce the number of hyperparameters to be trained
over multiple folds, selecting only the most relevant hyperparameters variation.

This allows the training of a reduced number of variation over multiple folds.

e Cross-fold Training
After selecting which hyperparameters are the most relevant in the analysis,
an experiment of training all remaining network variations over the ten pro-

posed folds was conducted. With this, the mean behaviour of each architecture

over the proposed problem is anylised.
e Usage of Regularization
Finally, the use of two different regularization methods, over the best tem-

poral and non-temporal architecture, over all folds and 300 epochs per model

was tested.
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Results for each training session are reported using always its best epoch
(epoch with the minimum MSE) on validation data. Training data results are omit-
ted. In all reported results, one frame equals a time step of approximately 1/3 of a

second, unless stated otherwise.

4.1 Hyperparameter Choice

As stated in Subsection 3.2.2, there is a great number of hyperparameters
to be considered for network training. Running all possible networks proves to be
unfeasible. Instead, a smaller training over one fold was conducted in order to
determine what are the most relevant hyperparameters for LSTM and non-LSTM
architectures.

In this smaller test, hyperparameters for both LSTM and non-LSTM net-

works are:

e Extractor: VGGI16.
e Used pooling layer: GMP or GAP layer.

e LSTM layer: number of time steps on LSTM (9 or 17), usage of causal or
non-causal dataset on LSTM, usage of dropout on LSTM (0%, 20% or 50%).

e Usage of a hidden FC layer on model: activation function of hidden FC layer

(relu or tanh) and usage of L2 regularization on hidden FC layer (L2 or none).

4.1.1 Reported Results for First Training

Results from this first test did not show significant improvements on using
GMP over the GAP pooling layer. GAP also shows to have a better training curve
of loss over epochs, as demonstrated on Figure 4.1.

This may be explained by seeing the global average pooling as a structural
regularizer [23].

Not using the LSTM layer in this first test yielded noisier results on time
prediction for every LSTM counterpart, as seen in Figure 4.2. Despite of that,
training loss for both LSTM and non-LSTM models were close.
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(a) GAP training loss. (b) GMP training loss.

Figure 4.1: Training loss over 90 epochs. Loss plot over epochs present larger spikes

when using GMP: (a) GAP training loss; (b) GMP training loss.

Usage of 17 frames (5,66 seconds of video) usually yields better minimization
results when compared with using 9 frames (3 seconds of video). The usage of
a non-causal target prediction on LSTM is also consistently better than using a
causal model. Usage of dropout on the LSTM layer proves to be essential. Not
using dropout consistently overfitted the model. There is no significant difference
between using 20% or 50% dropout.

Changing the activation function of the hidden FC layer between relu and
the hyperbolic tangent does not show any significant differences. The usage of
L2 regularization on the FC layer shows to slow down the training process. This
produced a slower training curve on all network configurations. Nevertheless, best
epoch on models without FC regularization yields satisfactory results despite the
overfitting on latter epochs, as depicted in Figure 4.3. Regularization was key on
not overfitting models without LSTM.

After these tests, the usage of the global average pooling layer was chosen
over the global max pooling for its consistent results and structure regularization; on
expanding the tests from 17 to 32 frames, using 9 and 32 frames input; opting for a
non-causal dataset with 20% dropout on LSTM; and on using the hyperbolic tangent
activation with no regularization in the FC layer. The non-usage of regularization

in the hidden FC layer was opted, as it would extend considerably the necessary
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Figure 4.2: Difference between using LSTM and not using LSTM layer: (a) LSTM
models training loss and time prediction; (b) non-LSTM models training loss and
time prediction.
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(a) LSTM with L2 regularization. (b) LSTM with no regularization.

Figure 4.3: Difference between using L2 regularizer and no regularizer: (a) LSTM

with L2 regularization; (b) LSTM with no regularization.
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training time for all networks. Instead, the usage of regularization was tested after,

on the best LSTM and non-LSTM models from the cross-fold training session only.

4.2 Cross-fold Training

In this training session, multiple network variations were tested over ten folds
in order to measure the network mean behaviour over folds. Tested hyperparameters

were:

Convolutional network: VGG16, ResNet50 and InceptionVa3.

LSTM layer: 9 and 32 frames input.

Usage of Hidden FC layer on model.

Usage of an auxiliary input on model.

Detailed list of all trained models is available on Appendix B.

4.2.1 Results for non-LSTM Models

Within the non-LSTM networks, the best individual result for both best and
last epoch MSE was archived by network 13 (ResNet50 with hidden-layer) on fold

9, as seen on Table 4.1.
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Table 4.1: 10 best individual results for non-LSTM networks.

Fold Model Best epoch MSE  Last epoch MSE

9 13 1.13 1.32
9 12 1.22 1.46
9 16 1.22 1.33
9 14 1.27 1.98
4 12 1.28 1.52
8 13 1.32 1.74
6 12 1.34 1.86
4 15 1.34 1.34
4 16 1.37 1.39
4 13 1.38 2.73

However, cross-fold validation is necessary when analysing a model. Best
mean MSE for all folds was archived by model 12 (VGG16 with hidden-layer), as

seen on Table 4.2.

Table 4.2: non-LSTM mean MSE, ordered by best epoch MSE.

Model Mean Best Epoch MSE  Mean Last Epoch MSE

12 1.46 2.10
15 1.56 1.60
13 1.58 2.26
16 1.68 1.87
14 2.06 2.76
17 2.46 2.76

It is interesting to notice that, by ordering these results by last epoch MSE,
models without a hidden layer (15, 16, 17) surpass its equivalent with a hidden-layer
(12, 13, 14). This result suggests that the usage of a hidden-layer in non-LSTM
networks can produce better results, however making the network more prone to
overfitting, as shown in Figure 4.4. Some time predictions can also be seen in

Figure 4.5.
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Comparison between using and not using a hidden-FC layer
on no-LSTM model
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Figure 4.4: Comparison between using and not using a hidden FC layer on non-
LSTM models (VGG16). Clear lines are the training curves for individual folds. It
is noticeable that the hidden-layer makes the model learn faster and better at the

initial epochs, but it easily over-fits on the following epochs.

It is also noticeable that the VGG16 obtains the best results, followed by
the ResNet50 and the InceptionV3. These results match with what was reported in

previous research [9].
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VGG16 non-LSTM without hidden FC layer time prediction on fold 4
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Figure 4.5: VGG16 non-LSTM time predictions with and without the hidden FC

layer. Results from the last-epoch of training on fold 4.

When comparing the three used convolutional networks structures, the VGG16
has the least tendency to overfit the models hidden layer, and generally yields bet-
ter results. The InceptionV3 network is consistently the worse between the three

networks. This behaviour is shown in Figure 4.6.
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time predictions for VGG16 non-LSTM with hidden FC layer on fold 4 (last-epoch results)
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Figure 4.6: Comparison between VGG16, ResNeth0 and InceptionV3 based non-
LSTM models with hidden FC layer and last-epoch time prediction on fold 4. We

can see the effects of overfitting the hidden-layer has in these networks.

The models performance were also analysed using the Pearson correlation,

as shown in Table 4.3.

47



Table 4.3: Mean correlation for non-LSTM models.

Model Mean Best Epoch Correlation Mean Last Epoch Correlation

12 59.73% 49.87%
15 57.62% 57.83%
13 57.29% 47.53%
16 55.15% 51.78%
14 41.83% 34.59%
17 32.84% 31.17%

These numbers match with the MSE results. The model with the best cor-
relation coefficient for best epoch is the VGG16 with hidden-layer, followed next by
VGG16 without hidden-layer.

In all tests, the ResNet50 and InceptionV3 networks were respectively in

second and third places.

4.2.2 Influence of auxiliary input on non-LSTM models

The usage of an auxiliary input on non-LSTM models are reported. Slightly
better results for best epoch mean MSE were achieved for validation data on all
models with an auxiliary input, as shown in Table 4.4.

The best last-epoch MSE still goes to model 15 (VGG16 without hidden-layer
and no auxiliary input). This once more shows that the models hidden FC layers
on both the auxiliary and main input sides have a strong tendency to overfit during
training sessions, and might need some stronger regularization methods.

In regards to the representation techniques used, the “counting representa-
tion” achieved consistently better results in all networks compared to the “one-hot
representation”. This suggests that although the “one-hot representation” has more
data, its larger sparsity and structure complexity harms the training process. It also
implies that the number and class of vehicles may be the most important information

to be processed by the network.
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Table 4.4: Mean MSE for all non-LSTM models, including models with an auxiliary

input.

model mean best epoch MSE  mean last epoch MSE

48 1.44 2.24
o1 1.45 2.19
12 1.46 2.10
15 1.56 1.60
49 1.56 2.45
52 1.57 2.35
13 1.58 2.26
16 1.68 1.87
50 1.90 3.34
53 1.96 3.12

4.2.3 Results for LSTM models

Results for LSTM models are reported. Almost all models that used an LSTM
network and converged proved to have an smaller MSE and better correlation than
its non-LSTM counterpart. Best individual results for best epoch MSE on train set
goes to models 7 (VGG16 with 32 frames input and no hidden FC layer) on fold 9.
The 10 best individual results are seen in Table 4.5.

However cross-fold validation is necessary to analyse the best model on all
folds. Model with best mean performance is shown in Table 4.6

It can be seen that model 1 (VGG16 with 32 frames LSTM input and hidden
FC layer) is the best model, followed by model 7 (VGG16 with 32 frames LSTM
input and no hidden FC layer). Those are followed by models 6 and 0, both of then
VGG16 with 9 frames LSTM input.

From this result, three aspects can be addressed.

e The VGG16 once more shows to be the best convolutional architecture for this

application.

e Longer LSTM sequences shows to yield better prediction results.
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Table 4.5: Best individual models for LSTM networks without an auxiliary input.

Fold Model Best Epoch MSE Last Epoch MSE

9 7 0.929 0.385
6 1 0.934 0.415
7 1 0.961 0.376
9 1 0.970 0.440
6 7 1.011 0.486
9 9 1.018 0.468
9 3 1.045 0.486
9 6 1.047 0.474
9 2 1.056 0.498
9 8 1.057 0.498

Table 4.6: LSTM models with best mean MSE, without an auxiliary input.

Model Mean Best Epoch MSE  Mean Last Epoch MSE

1 1.15 1.27
7 1.21 1.34
6 1.40 1.99
0 1.42 1.93
3 1.51 1.83
18 1.52 2.30
25 1.54 1.90
9 1.55 1.86
24 1.56 1.99
26 1.61 2.13
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e The regularization technique used in the LSTM (20% dropout) shows to also
influence the following hidden FC layer. Tested LSTM models did not suffer

with overfitting as much as non-LSTM based models.

Some time prediction samples for these networks can be seen in Figure 4.7.

VGG16 LSTM with 32 frames input and hidden FC layer time prediction
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Figure 4.7: Best individual models for LSTM networks without an auxiliary input.

Predictions over fold 4, best epoch.

It is noticeable that the LSTM models provides a less noisy signal compared

to its non-LSTM counterpart. This is discussed in details in Section 4.4.
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Models were also analysed in terms of its mean correlation. 10 models with

best correlation are shown in Table 4.7.

Table 4.7: LSTM models ordered by mean best epoch correlation.

Model Mean Best Epoch Correlation Mean Last Epoch Correlation

1 70.53% 68.22%
7 69.45% 67.64%
6 62.24% 54.02%
9 61.41% 56.75%
3 61.04% 57.52%
18 59.61% 46.50%
25 58.48% 54.63%
2 58.24% 48.31%
8 58.15% 51.71%
24 58.01% 51.23%

These results agree with those of the MSE. Models 1 and 7 (VGG16 32 frames
input LSTM) reach above 69% mean correlation levels.

Models that used an LSTM at output (models 18 to 29), tend to easily
diverge during training. An example of a time model that did not converge is shown
in Figure 4.8. Models that used a stateful LSTM network implementation (models
30 to 41) also did not converge.
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Time prediction for model 22 (inceptionV3 LSTM with LSTM at output).
Model did not converge

18 ~
16 -
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10
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Time [s]
Figure 4.8: Time prediction for model 22 on fold 0. We can see that this model did

not converge.

4.2.4 Influence of auxiliary input on LSTM models

Considering now LSTM models with an auxiliary features input, the exact
same pattern is seen as in Section 4.2.2. VGG16 based LSTM models that used an
auxiliary features input obtained slightly better results both in terms of mean MSE,
depicted in Table 4.8, and mean correlation, shown in Table 4.9, with an above 70%

correlation.
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Table 4.8: LSTM models ordered by best epoch mean MSE.

Model Mean Best Epoch MSE  Mean Last Epoch MSE

42 1.141 1.262
45 1.153 1.250
1 1.155 1.266
7 1.214 1.338
6 1.399 1.987
46 1.410 1.678
0 1.416 1.932
43 1.427 1.814
48 1.437 2.244
o1 1.451 2.190

Table 4.9: LSTM models ordered by best epoch mean correlation.

Model Mean Best Epoch correlation Mean Last Epoch correlation

42 70.99% 68.52%
45 70.76% 68.83%
1 70.53% 68.22%
7 69.45% 67.64%
46 63.49% 59.53%
43 62.57% 57.90%
6 62.24% 54.02%
48 61.85% 44.82%
9 61.41% 56.75%
51 61.12% 45.28%

In terms of features representation strategies, once more the “counting rep-
resentation” yields better results than the “one-hot representation”, asserting what
was discussed in Section 4.2.2.

After showing the positive impacts of an auxiliary input in the model, the

experiments using classification networks were halted, and understood as future
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works.

4.3 Regularization on Temporal and Non-Temporal

Models

As a last experiment, the effects of two different regularization methods on
the hidden FC layer of the best LSTM and non-LSTM models were tested, without
exploring the effects of using an auxiliary faster R-CNN input. In this experiment,
models 12 and 1 (VGG16, hidden FC layer, respectively with and without LSTM
layer) were trained over 300 epochs and ten folds, using the following regularization

methods:

e 20% Dropout.

e L2 regularizer with Keras (refer to Page 27) default parameters.

Results are shown in Figures 4.9, 4.10, 4.11 and 4.12. In all figures: blue
lines represents the loss figure over epochs on the training dataset; orange lines
represents the loss figure over epochs on the test dataset; and clear lines represent
the individual figures for each individual fold, while the darker lines represent the

mean figures between folds.

VGG16 with LSTM, L2 reguralization over hidden FC layer, 300 epochs

Figure 4.9: Model 60: Best LSTM model with L2 regularization over 300 epochs.
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VGG16 with LSTM, dropout after hidden FClayer, 300 epochs

Figure 4.10: Model 61: Best LSTM model with dropout regularization over 300

epochs.

VGG16 without LSTM, L2 on hidden FC layer, 300 epochs

Figure 4.11: Model 62: Best non-LSTM model with L2 regularization over 300

epochs.

VGG16 without LSTM, dropout after hidden FClayer, 300 epochs

Figure 4.12: Model 63: Best non-LSTM model with dropout regularization over 300

epochs.
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Tables 4.10 and 4.11 shows that, in this experiment, the dropout after the
hidden FC layer is the best regularization method for both LSTM and non-LSTM

architectures.

Table 4.10: Best non-LSTM and LSTM models MSE, validation data.

Model Mean Best Epoch MSE  Mean Last Epoch MSE
LSTM, L2 1.19 1.29
LSTM, Dropout 1.14 1.22
non-LSTM, L2 1.74 2.01
non-LSTM, Dropout 1.46 1.80

Table 4.11: Best non-LSTM and LSTM models correlation, validation data.

Model Mean Best Epoch Correlation Mean Last Epoch Correlation
LSTM, L2 69.22% 67.04%
LSTM, Dropout 71.34% 68.76%
non-LSTM, L2 53.33% 52.06%
non-LSTM, Dropout 60.19% 54.16%

4.4 Ablation study: LSTM vs non-LSTM models

In this section, the usage of LSTM layers in the model is compared with not

using LSTM layers.

4.4.1 Model and training complexity

LSTM models requires more resources from hardware in order to be trained.
On Keras, input tensor for the LSTM layer is of shape “batch size x time steps x features”.
Tensor shape for non-LSTM models is simply “batch size xfeatures”, as show in Fig-
ure 4.13. This means that the amount of memory necessary for non-LSTM models
is multiplied by the additional time steps dimension on LSTM models (If using a
sliding window for frame input).

The additional layer also multiplies the amount of trainable parameters. This

makes training process slower for LSTM models. In this work, LSTM models took
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from 60 to 150 seconds per epoch to train upon, while non-LSTM models took
approximately 6 to 15 seconds. In practice, LSTM models showed to require 8 to

10 times more time to finish training.

LSTM and non-LSTM base models

input: | (None, 32, 512)
output: | (None, 32, 512)

input : InputLayer

input: | (None, 512)

input : InputLayer
B PR output: | (None, 512)

input: | (None, 32, 512)
output: (None, 128) y
input: | (None, 512)
output: | (None, 128)

Istm : LSTM

dense : Dense

input: | (None, 128)
output: | (None, 128)

dense : Dense

input: | (None, 128)
dense : Dense

output: (None, 1)

input: | (None, 128)
dense : Dense

output: (None, 1)

*convolutional network is omitted

Figure 4.13: LSTM and non-LSTM base models structure (VGG16 extractor).

4.4.2 MSE and Correlation differences

As previously shown, LSTM models shows a significant improvement in terms
of MSE and correlation figures.

A direct comparison of the best non-LSTM model and LSTM models (without
auxiliary input, dropout regularization on the hidden FC layer) is showed on Table

4.12.

Table 4.12: Comparison of best non-LSTM and LSTM, without auxiliary input

models.
model mean best epoch mse  mean last epoch mse mean best epoch correlation mean last epoch correlation
best non-LSTM (63) 1.467 1.808 60.19% 54.16%
best LSTM (61) 1.142 1.229 71.34% 68.76%
Improvement W -22,19% W -32.03% A 18.53% 26.95%

It can be seen that the LSTM models have a correlation 18.5% higher com-
pared to non-LSTM models (best epoch). Minimized MSE is also 22.2% smaller on
LSTM models (best epoch). These results objectively show how the LSTM layer
improves the prediction results. LSTM models also show a smaller tendency to

overfit, even after applying the dropout layer on the model.
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4.4.3 Time and frequency response

Time prediction of non-LSTM models showed to be noisier than its LSTM
counterpart. This can be seen on its output time series. When calculating the power
spectrum density (PSD) for both LSTM and non-LSTM models, we notice that the
PSD for the non-LSTM model follow the PSD of the original signal, while the LSTM
filters high frequencies. We can conclude that the LSTM layer behaves as a low-pass
filter, as depicted in Figure 4.14.

best LSTM and non-LSTM models, time and frequency response comparison
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Figure 4.14: Comparison of best non-LSTM and LSTM, without auxiliary input

models. Image show the time response and power spectrum density of the signals.

4.5 Window Length Analysis

In this last section, the mean behaviour of the best temporal and non-
temporal architectures here proposed are analysed over different time windows. All

results until now presented correspond to instantaneous time window of 1 frame

(1/3 seconds).
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In order to estimate how these networks perform over different time windows,
a moving average filter (see Section 2.3.2) was used to average both the target and
predicted sound pressures, and recalculate the MSE and correlation figures. The
results are reported using windows of 3, 9 and 30 frames, corresponding to time
windows of 1, 3 and 10 seconds of video. Some examples of this filtering can be seen
in Figure 4.15. The improvement measured from such filtering in terms of MSE and

correlation figures are shown respectively in Tables 4.13 and 4.14.

Table 4.13: MSE bchaviour over different time windows.

mean M5E for different time windows

g 1/3s is Ig 10s
Best LSTM (61) 1.14 1.10 1.01 0.80
Improvement W -z.aa%  W-111a%  W-30.15%
Best non-LSTM (63) 1.47 1.41 1.31 1.07
Improvement W-a19% W-1092% W-26.77%

Table 4.14: Correlation behaviour over different time windows.

mean correlation for different time windows

thag: 1/3s is Is 10s
Best LSTM (61) 71.34% 72.00% 73.46% 77.04%
Improvement Ap 0.93% fp 2.93% A 8.00%
Best non-LSTM (63) 50.19% 651.58% 63.19% 66.19%
Improvement Ap 2.31% dh 4.99% fp 9.98%

It is noticeable that by averaging the sound pressure over longer periods of
time, a better correlation and lower MSE figures can be obtained, which is expected.
This is a useful statement when instantaneous sound pressure is not needed. With
this approach, the network is not retrained using the filtered dataset (only the
dataset output is filtered).
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Moving average over predictions with different time windows
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Figure 4.15: Predictions behaviour over different time windows for best LSTM model

(model 61). Time predictions on fold 4. 61



Chapter 5

Conclusion

In this research, temporal models consistently outperform non-temporal mod-
els. It was shown how the usage of longer sequences with a non-causal dataset load-
ing is preferable. The best results for single-input models was achieved by model 61,
detailed in Figure 5.1. The usage of auxiliary inputs were explored, using features
extracted with a Faster R-CNN network in two different tensor representations. It
was shown how dual input models can slightly improve predictions. It was reported
how the tested models tend to overfit, and two different methods of regularization

were tested, opting for the dropout method.

| Image Input H Image Input ‘

VGG16 VGG16 ocnim VGG16

GAP Layer GAP Layer GAP Layer

32 input, non-causal LSTM layer with 128 output
neurons and 20% dropout

FC layer, 128 hidden neurons with tanh activation

20% dropout

FC Layer, single linear output neuron

Audio Pressure Output

Figure 5.1: Detailed view of the best single-input model.



5.1 Future Works

During this research, a number of possible future works were identified. A

summarizing of the most promising ideas arc presented as follows.

e The creation of a new dataset, containing images from multiple angles and
places. Using images from real CCTV cameras is preferable. Also, recording
of audio closer to the framed scene is interesting. This will allow the model
to be tested closer to a real scenario. Closer inspecting how time of the day
interfere in the prediction results (Are predictions at night easier and better

than at day?).

e Closer exploration of the convolutional layer. This research was made using
the simplest way of integrating temporal features in a video analysis. There are
however, more sophisticated convolutional models, such as 3D convolutional
blocks [21, 24] and Convolutional LSTMs [25]. This will require the training

of the convolutional network, and may improve results even further.

e The usage of two input models showed promising results, and require a closer
study. The integration of classification networks such as the Faster R-CNN or

the YoloV4 into the analysis might be the best way of improving results.

e Development of a visualization tool integrating video cameras, sound maps
and traffic reports is interesting, as it puts this and related research closer to

a practical implementation of given system for smart cities.
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Appendix A

Detailed table of folds

Table A.1: Table of videos per fold

# Video Name Lenght{min) Daytime Transit Rain Fold_0 Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Fold_6 Fold_7 Fold_8 Fold_9
0 M2U00001 20:12 Day Mormal No Test Train Train Train Train Train Train  Train Test  Train
1  M2U00002 21:12 Day Mormal No Test Train Train Train Train Train Train Train Test Test
2 M2U00003 22:34 Day MNormal No Test Train Train Train Test Train Train Test Train Test
3 M2U00004 12:11 Day Mormal Mo Train Test Test Train Train Train Train Train Test  Train
4 M2U00005 21:35 Night Normal Mo Test Train Test Train Train Test Train  Train  Train  Train
5 M2U00006 21:11 Night Normal MNo Train Train Test Train Train Test Train Train Train Train
6 M2U00007 22:20 Night Normal No Test Test Train Train Train Test Train Train  Train Test
7 M2U00008 21:49 Night Normal Mo Train  Train Train Train Test Test Train Train Test Train
8 M2U00012 20:14 Day Intense Mo Train Train Test Train Test Train Test Test Train Test
5 M2U00014 20:37 Day Intense Mo Train Train Train Test Train Train Test Train Train Train
10 M2U00017 33:03 Day Light MNo Train Test Train Train Train Train Test Train Train Train
11 M2U00015 23:13 Day Light MNo Train Train Test Train Train Train Test Test Train Train
12 M2U00016 30:26 Day Light MNo Train Test Train Train Train Train  Train  Train Train Test
13 M2U00018 23:18 Night Normal MNo Train Train Train Test Test Test Train Train Test Train
14 M2U00019 21:32 Night Normal No Test Train  Train  Train Train Test Train Test Train Test
15 M2uo0022 25:54 Day Light MNo Train Train Test Train Test Train Test Train Train Train
16 M2U00023 30:18 Night Normal Mo Test Train Train  Train  Train Test Train Train  Train  Train
17 M2U00024 38:10 Night Light MNo Train Train Train Test Train Test Train Test Train Train
18 M2U00025 33:06 Sunrise  Light Mo Test Train Train Train Train Train Train Train Test  Train
19 M2U00026 25:39 Day Mormal Mo Train Test Test Train Train Train Test Train Train Train
20 M2U00027 39:15 Night Light Yes Train Test Train Train Train Test Train Train Train Test
21 M2U00029 30:11 Day Light Yes Train Train Train Test Train Train Test Test Train Train
22 M2U00030 25:16 Day Light Yes Train Test Train Train Train Train Test Train Train Train
23 M2U00031 24:06 Day Light Yes Train Train Train Test Train Train Test Train Train Train
24 M2U00032 25:45 Day Light Yes Test Train Train Train Train Train Train Test Train Train
25 M2U00033 29:23 Day Light MNo Test Test Train Train Train Train  Train  Train  Train Test
26 M2U00035 29:02 Night  Light Mo Train Test Test Train Train Train Train Train Test  Train
27 M2U00036 21:02 Day Mormal MNo Test Train Train Train Test Train Train Train Train Train
28  M2U00037 26:21 Day Mormal No Train Train Train Test Train Train  Train Train  Train  Train
29 M2U00039 20:16 Day Mormal No Train Train Train Test Train Train Train Train Test  Train
30 M2U00041 30:14 Day Intense No MNone None None None None MNone MNone None Test  Train
31 Mz2uooo42 36:33 Dusk Intense MNo None MNone MNone Mone None None MNone None Train  Test
32 M2U00043 21:53 Day Mormal No Train Train Train Test Train Train  Train None Train Train
33 M2U00045 25:59 Day Mormal No Train Train Train Test Train Train Train Train  Train  Train
34 M2U00046 20:22 Night  Light Yes Train Train Test Train Train Train Train Test Test Train
35 Mz2uoo047 20:07 Night  Light Yes Train Train Test Train Train Train Train Test Train Test
36 M2U00043 28:50 Day Light MNo Train Train Train Train Test Train Train Test Test Train
37 M2U00050 52:22 Day Light MNo Train Train Train Train Test Train Train  Train  Train  Train
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Table A.2: Table of fold hours
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Appendix B

Detailed table of trained networks

model causal
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Table B.1: Table of trained networks in multiple folds
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Table B.2: Table of trained networks in one fold
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