SENTIMENT LEXICON GENERATION WITH CONTINUOUS POLARITIES FOR PORTUGUESE USING LOGISTIC REGRESSIONS AND SEMANTIC MODIFIERS

Renan Araujo Lage

Projeto de Graduação apresentado ao Curso de Engenharia de Computação e Informação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientador: Daniel Ratton Figueiredo

Rio de Janeiro
Setembro de 2016
SENTIMENT LEXICON GENERATION WITH CONTINUOUS POLARITIES FOR PORTUGUESE USING LOGISTIC REGRESSIONS AND SEMANTIC MODIFIERS

Renan Araujo Lage

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA DE COMPUTAÇÃO E INFORMAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO DE COMPUTAÇÃO E INFORMAÇÃO

Autor:

________________________________________
Renan Araujo Lage

Orientador:

________________________________________
Prof. Daniel Ratton Figueiredo, Ph. D.

Coorientador:

________________________________________
Pedro Henrique Pamplona Savarese, M.S.

Examinador:

________________________________________
Prof. Toacy Cavalcante de Oliveira, DSc.

Examinador:

________________________________________
Bruno Adam Osiek, DSc.

Rio de Janeiro
Setembro de 2016
Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa académica, comentários e citações, desde que sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).
I thank my parents that encouraged me along all my university years. I thank my girlfriend that supported me while I was immersed in the doing of this work. I thank my dear friend Pedro and my adviser Daniel that guided me through the process of making this work. At last, I thank my friends for being who they are and supporting me in everything.
ABSTRACT

Research in sentiment analysis has hugely increased due to the advent of social medias and businesses interest on public opinion. Extracting opinion from text without the need of labeled data makes unsupervised approaches more appealing. However, many require a sentiment lexicon, a dictionary associating words to sentiments with a costly built process. This project proposes an automated approach to build a sentiment lexicon for the Portuguese language. The method is based on a supervised learning task that trains a logistic regression model on top of textual data classified as positive or negative and then extract terms that contribute the most to the model’s sentiment attribution. These terms are used to build the sentiment lexicon with polarities in a continuous range. The use of semantic rules as a preprocessing step is used to improve the model and subsequent lexicon generation.

Key-words: sentiment analysis, opinion mining, lexicon, logistic regression.
## Contents

1 Introduction .................................................. 1
   1.1 Sentiment Analysis ........................................... 1
   1.2 Extracting sentiment from text ............................ 2
   1.3 Sentiment Lexicon generation ............................. 3
   1.4 Objective .................................................... 4
   1.5 Methodology ................................................. 5

2 Related Work .................................................. 6
   2.1 Document Sentiment Classification ........................ 6
   2.2 Supervised Learning Methods ............................. 7
   2.3 Unsupervised Methods ..................................... 8
   2.4 Lexicon-based methods ................................... 8
   2.5 Lexicon Generation ........................................ 9
      2.5.1 Dictionary-based methods ............................ 9
      2.5.2 Corpus-based methods ............................... 10

3 Method Design and Implementation .......................... 12
   3.1 Logistic Regression ........................................ 12
      3.1.1 Linear regression ..................................... 13
      3.1.2 Logistic regression model ............................ 14
      3.1.3 Bag-of-Words ......................................... 16
      3.1.4 Lexicon extraction .................................... 18
      3.1.5 Threshold ............................................... 19
   3.2 SO-CAL - Semantic Orientation CALculator ............. 19
      3.2.1 Intensifiers .......................................... 20
4 Lexicon Evaluation

4.1 Datasets ................................................. 27
  4.1.1 Book reviews ....................................... 28
  4.1.2 Hotel reviews ...................................... 29

4.2 Logistic Regression model hyperparameters .................. 30
  4.2.1 SO-CAL valence shifters ........................... 30
  4.2.2 Valence shifters maximum number of steps ........... 30
  4.2.3 Class weights ..................................... 30
  4.2.4 Stop Words ....................................... 31

4.3 Lexicon extraction parameters ................................ 32
  4.3.1 Threshold ........................................ 32
  4.3.2 Polarity score conversion ........................ 32

4.4 SO-CAL parameters ...................................... 32
  4.4.1 Positive bias normalization ........................ 32

4.5 Word stemming .......................................... 32

4.6 Performance measurement .................................. 33

4.7 Train, validation and test .................................. 35
  4.7.1 Same domain test .................................. 35
  4.7.2 Other domain test .................................. 36

5 Results .................................................. 38

5.1 Logistic Regression model hyperparameters ................. 38
  5.1.1 SO-CAL valence shifters ........................... 38
  5.1.2 Valence shifters maximum number of steps .......... 39
  5.1.3 Class weights ..................................... 39
  5.1.4 Stop Words ....................................... 39

5.2 Lexicon extraction parameters ................................ 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Threshold</td>
<td>41</td>
</tr>
<tr>
<td>5.2.2 Polarity score conversion</td>
<td>42</td>
</tr>
<tr>
<td>5.3 Word stemming</td>
<td>42</td>
</tr>
<tr>
<td>5.4 SO-CAL parameters</td>
<td>43</td>
</tr>
<tr>
<td>5.4.1 Positive bias normalization</td>
<td>43</td>
</tr>
<tr>
<td>5.5 Optimal hyperparameters combination</td>
<td>43</td>
</tr>
<tr>
<td>5.6 Comparison against other sentiment lexicons</td>
<td>44</td>
</tr>
<tr>
<td>6 Conclusion</td>
<td>48</td>
</tr>
<tr>
<td>6.1 Future Work</td>
<td>49</td>
</tr>
</tbody>
</table>

Bibliography 50
List of Figures

3.1 Linear regression line fitted to data points in a scatter plot [1] . . . . 13
3.2 Logistic sigmoid function fitted to data in scatter plot [2] . . . . . 15
## List of Tables

4.1 Book reviews dataset statistics. .............................................. 28
4.2 Hotel reviews dataset statistics. ........................................... 29
4.3 Book reviews training dataset sentiment distribution. .................. 36
4.4 Book reviews test dataset sentiment distribution. ....................... 36

5.1 Highest MCCs obtained for each different test. .......................... 39
5.2 MCC for different maximum number of steps in both datasets with
stemmed words. ................................................................. 40
5.3 Highest MCCs for balanced class weights in cost functions. ............ 40
5.4 Highest MCCs for stop words removal option in different datasets. ... 40
5.5 MCC values for different thresholds in both datasets. .................... 41
5.6 Highest MCCs for binary and raw polarity score conversion options
in both datasets. ................................................................. 42
5.7 Highest MCC results on different datasets for stemming words option. 42
5.8 Highest MCC results on different datasets for positive bias normal-
ization option. ................................................................. 43
5.9 Optimized combination of hyperparameters for each dataset along
with MMC and accuracy. ...................................................... 44
5.10 Number of positive and negative terms in each sentiment lexicon. ... 46
5.11 Performance and size of each lexicon when tested against the book
reviews test set. ................................................................. 46
5.12 Performance and size of each lexicon when tested against the hotel
reviews dataset. ............................................................... 46
Chapter 1

Introduction

1.1 Sentiment Analysis

Opinions are central to almost all human activities since they influence our behaviors, beliefs and how we see reality. To a considerable degree, we even condition our choices upon how others evaluate the different possibilities. We seek opinions to build our own and to assist in taking better decisions. An observation that applies to individuals as well as to organizations. Businesses and organizations are searching for the opinion of its consumers or the general public about their products and services [3].

Opinions and its related concepts such as sentiments, evaluations and emotions are the subject of study of sentiment analysis or opinion mining. Sentiment analysis is the task of extracting opinions from text and since early 2000, has grown into one of the most active research areas in natural language processing [4].

At that time a series of factors started to increase the interest in people’s opinions and sentiments, leading research in the area to an exponential growth. First, an industry surrounding sentiment analysis had flourished, providing a strong motivation for research. Second, from the research and academic perspective, there had been many challenging problems that have never been studied before. Last, the advent of social media on the Internet. Blogs, discussion forums, reviews websites and social networks all flooded the Web with opinionated content available to anyone with a connection. The presence of social media and its opinionated data intercepts the
increasing interest in the sentiment analysis area.

There has always been a necessity to analyse public and consumer opinions. Organizations conducted opinion polls, surveys and focus groups to gather this data. Acquiring this kind of information has long been a huge business itself for marketing and public relations. Automatically extracting it from, nowadays abundantly available, public information in the Web is a huge facilitator with a great business and organizational value.

For these reasons the field has been raising a lot of interest to businesses and society in general. Although sentiment analysis has originated from computer science, it has spread across many areas such as management sciences, economics, social sciences and even industrial activities, finding its way to be relevant in almost all domains.

1.2 Extracting sentiment from text

Semantic Orientation (SO) is a measure of opinion or sentiment expressed in text. It usually captures an evaluative factor (e.g., positive, negative, angry, sad) and an associated degree that tells how strong this factor is towards a subject topic, person or idea [5]. Semantic Orientation can be used to analyze public opinion and extract helpful insights for marketing and business perspectives, such as measures of success and popularity.

The task of extracting and analyzing semantic orientation from texts has been seen in the literature with diverging terms: sentiment analysis [6], opinion mining [6], subjectivity [7][8], analysis of stance [9][10], point of view [11][12], among others. Within this project scope, the term sentiment analysis is used. Semantic orientation or polarity refers to the sentiment direction and strength of a text or lexical item. Polarity score is a numerical value that measures semantic orientation.

The problem of extracting sentiment from text can be categorized in document sentiment classification, sentence sentiment classification and aspect-based sentiment analysis. In document and sentence classification the difference is in the scope
of the text unit. On the first we are interested in extracting sentiment from a doc-
ument whereas on the second from a single sentence or clause. Aspect-based sen-
timent analysis is a more complete approach concerned with extracting sentiment
and opinion targets, or entities, related to that sentiment [13].

This project is focused on document level classification and this problem is usually
solved by two main approaches in literature. The supervised classification approach
consists of building classifiers from labeled instances of text that can then be used to
classify novel text [14], essentially a machine learning approach. The lexicon-based
methods are an unsupervised learning approach that uses a sentiment dictionary.
These methods work on the assumption that the overall sentiment of a document
can be derived from individual words or phrases sentiment orientation [15]. In this
project we are mainly interested in the second method, where document sentiment
orientation is obtained from a lexicon. In particular we are interested in how to
build these dictionaries of word’s sentiment, or sentiment lexicons.

1.3 Sentiment Lexicon generation

The lexicon-based approach assumes there is a set of words with prior polarity,
these words have been called opinion words, polar words and sentiment words in
research literature [3]. Positive sentiment words are used to express some desired
states or qualities while negative sentiment words express undesired states or qual-
ities. A sentiment lexicon is a collection of sentiment words, phrases or terms with
their associated semantic orientations and strengths [16]. In a sentiment lexicon
each positive term is usually assigned a positive polarity score, and each negative
expression a negative one.

A lexicon has to be somehow compiled. This can be done in a manual process in
which each word is analyzed by a person, assigned a polarity and included. However,
that would be a laborious task for a large sized lexicon. Many automated approaches
for lexicon generation have been presented in the literature so far. They can be
used, if not by themselves, to bootstrap a lexicon that can be improved latter with
a reduced amount of manual labour.
1.4 Objective

The goal of this project is to propose an automated approach to generate a sentiment lexicon for the Portuguese language. The method is based on a supervised learning task that trains a logistic regression model on top of textual data classified as positive or negative and then extract terms that contribute the most to the model’s sentiment classification. These terms are then used to build the sentiment lexicon along with their polarities score in a continuous range. This approach yields a domain specific, or context-aware, lexicon. Which means each word’s associated sentiment is specific to a single theme, formality, format and/or structure present in the corpus used. Since many words’ semantic orientation are specific to a context[17], when the generated lexicon is used by lexicon-based methods in a corpus of the same domain it was built on, the method should correctly classify novel data with a higher accuracy than with general-purpose lexicons.

In order to attain our main objective we also design and implement a Portuguese version of the SO-CAL (Semantic Orientation CALculator), a lexicon-based method for sentiment analysis used to evaluate the generated lexicon. The method uses semantic rules that affect words’ semantic orientation to improve its prediction when compared to a general lexicon-based method that just aggregates words’ polarities with no previous treatment.

Finally, the semantic rules designed for SO-CAL will also be used as a preprocessing step for the logistic regression model features (words and terms). By taking into account words semantic context, the generated lexicon should have an improved quality over one that doesn’t.

The trained logistic regression model could also be used as a sentiment classifier. However, the approach of generating a lexicon from it presents at least two advantages over using the model itself. First it generates a sentiment lexicon that can be used by a number of other more sophisticated lexicon-based algorithms, such as SO-CAL itself. Second, by controlling in what degree a term is accepted as part of the sentiment lexicon, we can build a more general and less fitted lexicon that performs well even on data unrelated to data it was built on.
1.5 Methodology

In order to evaluate and test our hypothesis a pipeline of tasks needs to be built. Those tasks are further explained in Chapters 3 and 4 and can be briefly presented as:

- Train a logistic regression model on top of a labeled dataset of polarized texts.
- Select terms whose logistic regression estimated coefficients indicates a significant contribution towards a sentiment.
- Build a lexicon with those terms in which polarity scores are derived from the logistic regression coefficients.
- Apply the SO-CAL method to a dataset using the generated lexicon.
- Measure how well the method correctly classified sentiment.

Each of those tasks has a number of hyperparameters and options that can affect the final result. The impact of each of these options on the quality of the generated lexicon is analysed. Also, the performance of the SO-CAL method using the generated lexicon is compared to using other publicly available lexicons, with two different datasets.

Chapter 2 presents related works in the area of automatic lexicon generation and sentiment analysis, focusing mainly in unsupervised approaches. Chapter 3 the theoretical background and methodology used along this project is presented. The evaluation process along with hyperparameters and other options are detailed in chapter 4. Chapter 5 exhibits results and analyse them. The last chapter shows a conclusion of the work done in this project and incites future work.
Chapter 2

Related Work

The sentiment analysis research field is large and rapidly growing. There is a great amount of work dedicated to this subject and its related concepts. Since our interest relies on automatic lexicon generation and document sentiment classification using lexicon-based methods, this chapter focus on exposing research done in these fields, only grasping on other subjects like supervised learning methods.

2.1 Document Sentiment Classification

Document sentiment classification is perhaps the most extensively studied topic in sentiment analysis [6]. The task considers the whole document as a target to be classified as expressing a positive or negative opinion or sentiment.

Document sentiment classification assumes that the opinionated document expresses opinion on a single entity and contains opinions from a single author. This assumption fits reviews of products and services well. They are usually an evaluation of a single subject written by a single person. However, it may not hold true for blog posts, forum discussions and other more complex text pieces.

Techniques for document classification are divided into two categories: the supervised learning methods and unsupervised methods. A general view of supervised learning methods is in the next section and unsupervised methods are presented later.
2.2 Supervised Learning Methods

Sentiment classification is usually approached in literature as a classification problem with two classes, positive and negative\cite{3}. Most research papers disregard the neutral class, facilitating the task, but it is possible to use it.

Being a text classification problem, any supervised learning method can be used. Naïve Bayes and support vector machines (SVM) are commonly used to solve this problem \cite{18}\cite{19}. Perhaps the first paper to publish a supervised learning method in sentiment analysis was the one by Pang, Lee and Vaithyanathan \cite{14}. They classified movie reviews into positive and negative classes. The authors concluded that both Naïve Bayes and SVM performed quite well using bag-of-words (or unigram) features, although a number of other feature options were tried.

Like in most machine learning applications, an effective selection of features can be key to improve accuracy. Research has been done experimenting with a large number of features for sentiment classification, such as:

**Terms and their frequency.** The most common features are individual words or unigrams associated with their frequency count. These frequencies can also be weighted by inverse document frequency, namely the tf-idf scheme from information retrieval. These features are highly effective for sentiment classification as well as traditional text classification.

**Part of speech.** The use of part-of-speech (POS) as a feature may treat differently words with distinct POS tags. Since adjectives are describing words that mainly qualify nouns, sentiment is mostly associated to adjectives. Differentiating features by their part-of-speech can be beneficial to the model.

**Sentiment shifters.** Sentiment shifters are expressions that can change the semantic orientation of neighboring words, e.g., from positive to negative. They will be better explained in Chapter 3.
2.3 Unsupervised Methods

Perhaps the first unsupervised method for sentiment analysis was the one introduced by Turney [15]. It performs sentiment classification based on a set of fixed syntactic patterns that are likely used to express opinions. These patterns are based on POS tags and are used to identify opinions in text. Then to identify semantic orientation a measure was defined: the pointwise mutual information (PMI). PMI is a measure of the statistical dependence degree between two terms. The sentiment orientation (SO) was then calculated by the formula:

\[ SO(\text{phrase}) = \text{PMI}(\text{phrase, } \text{"excellent"}) - \text{PMI}(\text{phrase, } \text{"poor"}) \]

The method doesn’t need a lexicon as it only requires two words with previously known semantic orientation, excellent and poor. Its classification accuracies varied from 84% in automobile reviews to 66% in movie reviews.

Feng et al. [20] compared PMI to three other measures of association using different corpora. Those measures are Jaccard, Dice, and Normalized Google Distance. The method was applied on top of data from Google indexed pages, Google Web IT 5-grams, Wikipedia, and Twitter. Their work concluded that PMI performed better when used on the Twitter corpus.

2.4 Lexicon-based methods

Lexicon-based methods are a type of unsupervised classification approach whose key characteristic is the use of a dictionary of sentiment terms and their polarities, a sentiment lexicon. This approach was first used by Hu and Liu [13] in aspect-based sentiment analysis. Kim and Hovy [21] also used it for sentence-level sentiment classification.

A general lexicon-based method sums up the polarity scores of all sentiment terms in the document. The document’s semantic orientation is classified as positive if the sum is positive, negative if the sum is negative, and neutral if the sum is 0. However, many approaches expand on that base method in a number of ways.
The incorporation of intensification and negation can refine the method when calculating a document’s sentiment [22][23][16]. Polanyi and Zaenen [24] showed there are other factors that can affect the sentiment orientation of a particular term. These factors are called valence shifters (or sentiment shifters) and are further explained in Chapter 3.

Taboada et al. [16] implemented and extended this ideas further by considering finer cases and selecting better values for valence shifters modifiers. This method is named SO-CAL (Sentiment Orientation CALculator) and it is implemented and adapted to the Portuguese language in this project.

2.5 Lexicon Generation

There are three main approaches to compile sentiment terms: manual approach, dictionary-based approach and corpus-based approach. It was already stated that the manual approach is laborious and time-consuming, this favors an automatic approach to the problem.

2.5.1 Dictionary-based methods

Using a dictionary to compile sentiment words is an obvious approach because most dictionaries list synonyms and antonyms for each word, e.g., WordNet [25]. Therefore, a simple method is to choose a few seed sentiment words to bootstrap based on the synonym and antonym structure of a dictionary [13][26]. A manual inspection step can be undertaken after creation to fix any errors.

There are a number of dictionary-based methods that use graphs in the generation process. Blair-Goldensohn et al. [27] presented a bootstrapping method that uses a positive seed set, a negative seed set and a neutral seed set. The approach works based on a directed, weighted semantic graph in which neighboring nodes are synonyms or antonyms of words from WordNet and are not part of the seed neutral set. The neutral set is used to stop the propagation of sentiment through neutral words. Each word sentiment score is attributed through iterations of a modified
version of the label propagation algorithm [28]. The final scores are used as polarity values for each word.

Rao and Ravichandran [29] compared three graph-based semi-supervised learning methods that separate positive and negative words given a positive seed set, a negative seed set, and a synonym graph extracted from WordNet. Label propagation had a significantly higher precision and low recall in comparison.

Esuli and Sebastiani [30] used supervised learning to classify words into positive and negative classes. A set $P$ of positive seed words and a set $N$ of negative seed words is initially given, the two seed sets are first expanded using synonyms and antonyms from a dictionary to generate the expanded sets $P'$ and $N'$. Then the algorithm uses all the glosses in the dictionary for each word in $P' \cup N'$ to generate a feature vector. A binary classifier can then be trained on top of those features. Esuli and Sebastiani [31] implemented an improved version of these classifiers using different algorithms and built the SentiWordNet, a sentiment lexicon for every term in the WordNet dictionary.

### 2.5.2 Corpus-based methods

The corpus-based approach has been used in two main scenarios:

1. Given a seed list of known sentiment words, discover other sentiment words and their semantic orientations from a domain corpus [32][13][33].

2. Use a domain corpus to adapt a general-purpose sentiment lexicon to a specific domain [34][35].

Although the corpus-based approach may also be used to build a general-purpose sentiment lexicon, by using a very large and diverse corpus, the dictionary-based approach is usually more effective because a dictionary contains all words[3]. Corpus-based methods should be used if there is an interest in working with domain specific sentiment lexicons.
This project’s method of building a lexicon can be categorized as a corpus-based method since it uses a corpus of data to generate a lexicon. However, it does not fit in the typical use-case of this type of approach. It works through a supervised learning method instead since it trains a logistic regression model on top of the corpus and extract the sentiment lexicon from it. The next chapters will explain this process in details.
Chapter 3

Method Design and Implementation

In order to understand the process of generating a lexicon from a logistic regression model, logistic regression needs to be minimally understood. Specifically how the model parameters, or coefficients, are estimated from data. Logistic regression will be used to train a model on top of a collection of texts classified as positive or negative. There’s also a need to understand the SO-CAL method for sentiment analysis since, besides being used to evaluate the generated lexicon, part of the method will be used as a preprocessing step for the logistic regression features. In an attempt to improve the overall quality of the lexicon. This chapter will describe these concepts and how they fit together in the task of generating a sentiment lexicon.

3.1 Logistic Regression

Logistic regression is a linear model developed by statistician David Cox in 1958[36]. It can be considered a discrete choice model, in the sense that it estimates the probability of a binary response based on one or more independent variables/features. This model fits well as a solver to binary classification problems, such as the one presented by sentiment analysis.
For a better understanding of logistic regression, the linear regression model is presented first and then we can see how logistic regression derives from it and is in fact a special case of the generalized linear model [37].

### 3.1.1 Linear regression

The linear regression function models the relationship between a scalar dependent variable and one or more independent variables/features as a linear function. The model is used to predict data whose outcome is in the form of continuous numerical values. Its formula can be defined as:

$$h_\theta(x) = \theta_0 + \theta_1 x_1 + ... + \theta_i x_i + ... + \theta_n x_n = \theta^T x$$

In which $x_i$ is an input variable/feature, $\theta_i$ is a linear function coefficient estimated from the collection of examples in the training data, $n$ is the the total number of features and the last equation is a vectorized form of the previous equation.

A linear regression model estimates parameters for a linear function that better fit the training data. The plot in Figure 3.1 is an example of a linear function fitted to data points in a scatter plot.

![Figure 3.1: Linear regression line fitted to data points in a scatter plot [1].](image)

The values of $\theta$ can be learned from a collection of example data by minimizing a specific cost function. This can be done with techniques such as the least
squares method where the sum of squared residuals is minimized, a residual being the difference between an observed value and the fitted value provided by the linear regression model. The least squares cost function can be written as:

\[ C(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

Where \( \theta \) are chosen linear coefficient parameters, \( m \) is the number of examples in the dataset, \( h_\theta(x^{(i)}) \) is the value predicted by the model for the set of features \( x \) in example \( i \) and \( y^{(i)} \) is the real dependent variable value in example \( i \).

Optimized values for the \( \theta \) coefficients can be obtained by minimizing the cost function for \( \theta \). The sum of squared residuals is a convex function and therefore has only one minimum. Finding this minimum is a problem with a closed-form solution that uses matrix calculus to differentiate with respect to \( \theta \) and set equal to zero. Thus, making it simple to calculate. With the estimated optimized parameters the model can predict more accurate values for novel input data.

Linear regression presents itself as an effective way of predicting continuous data outcomes. However, if the dependent variable is not a continuous numerical value but is instead a category or label, there are other models that can better fit the data and increase accuracy in predictions [38]. The logistic regression model take the ideas from linear regression and adjust them to binary outcomes.

\[
X(m,n) = \begin{cases} 
  x(n), & \text{for } 0 \leq n \leq 1 \\
  x(n-1), & \text{for } 0 \leq n \leq 1 \\
  x(n-1), & \text{for } 0 \leq n \leq 1 
\end{cases} = xy
\]

3.1.2 Logistic regression model

The logistic regression model comes to address the problem of having outcomes in the form of categories, also known as labels or classes. The outcome of a single trial is now described as the probability of a given trial to be in a given category. In simplest form, this means that we’re considering just one outcome variable and two states of that variable: either 1 or 0, being or not in the category.
This probability is modeled using a logistic or sigmoid function. Its formula can be defined as:

\[ g(z) = \frac{1}{1 + e^{-z}} \]

In the above formula, \( g(z) \) is the logistic function that will predict the outcome and \( z \) is the same linear regression function previously presented. In that way, logistic regression fits the linear regression function in a model that can predict a binary outcome. The expanded formula can be written as:

\[ h_\theta(x) = \frac{1}{1 + e^{-\theta^T x}} \]

A logistic regression function plot fitted to data can be seen in Figure 3.2. The horizontal axis is the linear regression function values \( z \), the vertical axis is the logistic regression function \( g(z) \), blue dots represent data in category blue, red dots data in opposing category red and the green curve a logistic regression function fitted to this data.

Figure 3.2: Logistic sigmoid function fitted to data in scatter plot [2].
Suppose a red category represented by the number 1 and an opposing blue category represented by 0. The graph in Figure 3.2 shows that when the $z$ function (the linear regression function) value is greater than 0.5, the probability that it belongs in category red is greater than 0.5, resulting in its classification to red. Whereas when $z$ is less than 0.5 and the probability also less than 0.5, the outcome is classified in the opposing blue category. In this way, this model can classify the input features into opposing or binary categories. Logistic regression can be expanded to deal with multiclass problems as well [39] but that is of no interest since within this project’s scope the only interest relies on classifying data in two categories: positive (+1) and negative (-1).

In the same way as linear regression, $\theta$ parameters that better fit the data must be estimated. This can be done in the same manner, by minimizing a cost function. However, when applying the same method as in linear regression, the sum of squared residues, the resulting cost function doesn’t have normally distributed residuals. Which means it’s not possible to find a closed-form expression for the coefficient values[40].

The minimization of cost function for logistic regression can be solved by a number of numerical methods such as gradient descent, conjugate gradient, the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) and its limited memory version L-BFGS [41]. However, detailing cost functions and how to minimize them is out of the scope of this project as the presented knowledge is sufficient to understand how the model can be used to build a sentiment lexicon. Specifically our interest relies on the fact that in a logistic regression model, each input feature has an associated coefficient $\theta_i$ that is learned from the training data. This coefficients represent the contribution that each feature gives towards the target category and this intuition will be key to understand how the lexicon is extracted from the model.

### 3.1.3 Bag-of-Words

So far logistic regression presents itself as a way to classify numerical data in binary categories. However, data in sentiment analysis is textual. A way to
represent text as a numerical feature is required, hence the **Bag-of-Words** model [42].

In the Bag-of-Words model, a text (such as a sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar and even word order but keeping multiplicity. They are usually used to generate features for text classification algorithms. The most common type of features extracted from this model is the term frequency, the number of times a term appears in the text. However, a number of others features can be extracted from the text. One could want to normalize the term frequencies in a document by weighting them with the inverse of document frequency in the entire collection of documents, namely tf-idf [43], or simply use a binary feature indicating presence or absence of a term in a text.

A Bag-of-Words could be used to represent an individual term, a text or the entire collection of texts, the whole corpus. An example of an array representation for each of these categories in a corpus composed of two documents can be seen below:

1. *Mary* likes books. She likes comics too.
2. *Peter* also likes comics.

The entire dictionary of words that appear in a corpus can be represented by an array of terms. And the term frequency in a text piece by another array of same size, whose indices point to the respective term in the first array, and whose values indicates the term frequency in that text. An array of the whole vocabulary of terms for our corpus would be:

```
["Mary", "Peter", "likes", "also", "books", "she", "comics", "too"]
```

An individual representation of a term in the corpus, *Mary* in this case:

```
[1, 0, 0, 0, 0, 0, 0, 0]
```

The individual words array can be summed to represent an entire document with its respective words frequencies.

1. `[1, 0, 2, 0, 1, 1, 1, 1]`
2. `[0, 1, 1, 1, 0, 0, 1, 0]`
The entire corpus could be represented by the sum of document arrays, although
that has no use as a feature for text classification:

\[ [1, 1, 3, 1, 1, 1, 2, 1] \]

With a Bag-of-Words model, features can be generated from text. Making it
possible to train a logistic regression model on top of labeled textual data, in our
case data labeled with positive or negative sentiment.

3.1.4 Lexicon extraction

By using Bag-of-Words, each document in a corpus is represented by a vector
of terms’ frequencies that when labeled as positive or negative can be used as features
to train a logistic regression model.

Logistic regression estimates coefficients that better fit the training data. These
coefficients are associated to each feature in our vector, that is to each term in
our corpus vocabulary. Which means every term in the corpus has an associated
coefficient that represents its individual contribution in the classification process.
Since positive and negative labels are represented by the numbers +1 and -1, terms
that contribute towards a positive classification would have positive values whereas
ones that contribute towards a negative label would be negative.

The lexicon extraction process can be described in two steps:

1. Each term’s coefficient is analyzed and a decision about whether or not that
term will be part of the lexicon has to be made.

2. The coefficient is converted to a polarity score that expresses the intensity
of the sentiment. It can be the coefficient value itself, or a binary indicating
positiveness or negativeness.

A simple way to generate a lexicon would be to split our vocabulary in terms
whose coefficients are positive, and ones whose coefficients are negative. These two
separated groups of terms represent opposing contributions towards the sentiment
classification task. A group that contributes towards positive labeling and one towards negative. The lexicon can be built by assigning a positive polarity to terms with positive coefficients and a negative polarity to terms with negative ones. Terms are considered neutral and are not included in the lexicon if their coefficient equals zero.

However, this simple method may not generate the best lexicon as it only marginally take into account words that are neutral. In order to effectively disregard neutral words and select in which degree terms are accepted in the lexicon a parameter can be defined. The threshold parameter will be presented next.

### 3.1.5 Threshold

Even though all words will have an associated coefficient, not every word has an intrinsic polarity. The so called neutral words will have near zero contribution in the task of labeling a document. These words should not be present in the generated lexicon as they would supposedly produce erroneous classifications and lower the overall accuracy of the sentiment analysis task. A minimum absolute value for the coefficients must be defined to separate neutral words from polarized ones. A value under which words won’t be included as part of the generated lexicon. Within this project scope this value will be named threshold.

The process of creating a lexicon is refined by using a threshold value. A number of others parameters can also have a direct influence in the lexicon generation process and those are presented in the evaluation chapter. The SO-CAL sentiment analysis algorithm and how it can further improve the lexicon generation is presented next.

### 3.2 SO-CAL - Semantic Orientation CALculator

SO-CAL is a lexicon based method to extract sentiment from text, therefore a way to solve the sentiment analysis problem. It follows the work of Osgood, Suci and Tannenbaum [5] by making two assumptions: individual words have what is referred to as prior polarity, that is, a semantic orientation independent of domain; and that said semantic orientation can be expressed as a numerical value. These
same assumptions have also been adopted by several lexicon based methods for sentiment analysis [44][21].

A general lexicon based method for sentiment analysis can be described as: for all words in a text that are present in the lexicon, retrieve their polarity scores and aggregate them to reach a single score for the text. SO-CAL starts with this same idea but expands it in a number of ways. Concepts like limiting the polarity score’s range, applying multipliers to polarities according to semantic rules, the so called valence shifters, and taking into account statistical events, such as a higher occurrence of positive words in human generated text are all considered and implemented in the SO-CAL algorithm. The method was first presented by Taboada and Grieve in 2004 [45] and has gone through a number of improvements in later works [23][16].

This project’s implementation of the SO-CAL method took some of those ideas and applied them to the Portuguese language. Savarese [46] has also implemented a similar version of the SO-CAL algorithm for the Portuguese language. This section will present the method’s steps that were adopted in this project, starting with valence shifters.

Valence shifters were first presented in the work of Polanyi and Zaenen [24] and were used and expanded in SO-CAL. They are an attempt to better reflect sentiment in a text by applying a set of semantic rules that can capture how a word’s sentiment orientation can be affected by nearby words. Valence shifters can be defined as lexical items that have the property of modifying other neighboring lexical items semantic orientation. They can be classified into 3 different categories: intensifiers, negators and irrealis. Their description and effect on other word’s polarities is described next.

3.2.1 Intensifiers

Intensifiers themselves can be classified into two major categories: amplifiers increase the polarity of neighboring lexical items whereas downtoners decrease it [47]. Examples of amplifiers are: muito (very), mais (more) and bastante (quite). Whereas pouco (little) and quase (almost) are downtoners.
Each intensifying word has a percentage multiplier associated with it and they affect neighboring words semantic orientation by applying this multiplier to their polarities.

Besides the multiplier values, an intensifier can affect the neighbouring semantic orientation in different ways. It can be referring only to the following word, it can refer to a previous one or it can intensify words that are located far away from the intensifier. Differentiating between all those distinct situations and applying the intensifiers accordingly would be an arduous task. This project’s implementation takes a simpler approach by applying multipliers in both directions until a clause break is hit or a maximum number of words is affected, being this last parameter configurable. Examples of clause breakers are punctuation marks and some connectives like mas (but) and portanto (therefore).

An example of how an intensifier can change another word’s polarity, a downtoner in this case, is in the sentence A sopa quase me agradou. If agradou has a polarity score of 2 and quase has a -50% modifier, the final polarity score for agradou is 1.

### 3.2.2 Negators

An obvious approach to negation is to simply reverse the polarity of words next to a negator. The polarity score of bom (good) in não é bom (not good) would change from 3 to -3. This approach is known as switch negation[48].

However a number of problems have been found with this method[16][22][49]. Taboada and Brooke[16] proposed a new method called shift negation in which the polarity score is shifted towards the opposite polarity by a fixed amount, in their work this value was fixed to 4. This project uses switch negation because shift negation with a fixed value of 4 was targeted on their lexicon whose polarities scores ranged from -5 to 5 and in this project numerous lexicons with varying ranges are used.

When a negator is found, the negation modifier is applied to the following lexical items until a clause break is found or the maximum number of affected words is
3.2.3 Irrealis

There are some markers in a sentence that indicates that words in a sentence may not be reliable for the purposes of sentiment analysis. These markers are referred to as irrealis and are usually associated with non-factual contexts. In Portuguese, these markers are mostly revealed by the use of subjunctive mood. But also include the use of imperative language, conditional markers, questions and some verbs like espero (expect) and duvido (doubt).

Their presence in a sentence can change the meaning of polarized words in a subtle and sometimes unclear way. For example:

1. Com aquele elenco, o filme deveria ser bom, mas não é. (With that cast, the movie should be good but it isn’t).

2. Apesar de tudo, o filme deveria ser considerado o melhor do ano. (Nevertheless, the movie should be considered the best of the year).

In the first sentence, the correct interpretation would be for the word deveria (should) to revert the sentiment orientation of bom (good), which is an approach supported by the contrast revealed in the mas (but) clause. However, in the second sentence deveria should not reverse the positive meaning given by melhores (best).

The confusing nature of this type of markers and the fact that they rarely express facts, make it better to ignore the semantic orientation of words that are in the same clause. Therefore, words in the same clause of an irrealis marker loose their sentiment intensity, reducing their polarity scores to 0.

3.2.4 Positive bias normalization

Kennedy and Inkpen[22] observed that lexicon-based methods generally show a positive bias, which is probably due to a universal human tendency to favor positive language[50]. This problem can be overcome by simply shifting the numerical cut-off point between positive and negative reviews[51]. However, in the latest SO-CAL
paper[16], an alternative was adopted: being negative expressions relatively rare, they are given more cognitive weight and therefore an amplified polarity score when they do appear. This is done by amplifying the final score of any negative expression in a fixed amount (50% was used in this project).

This alternative approach has a small advantage on average over the former, and is more theoretically satisfying. Also, the positive bias normalization step has positively affected the overall performance in the most significant way across all other SO-CAL measures[16]. Its analysis will indicate whether the positive bias also exists in the Portuguese language or is restricted to English.

3.2.5 Final score aggregation

The final polarity score for a text can be aggregated from individual word’s polarity in a number of ways. In the SO-CAL method the individual polarized words scores are simply summed, after applying all modifiers to it, and then averaged by the total number of polarized words in a text. This project has no interest in comparing degrees or intensities of sentiment in texts, so there is no use in averaging the final score. In fact, since the only interest relies on the the predicted positive or negative sentiment for a given text, any numerical value variation can be disregarded. In that way, scores greater than 0 are labeled as positive and lesser are labeled as negative, 0 or neutral scores are discarded.

An example to illustrate valence shifters and score aggregation in a sentence can be seen below:

0 programa era lento mas muito divertido.
(The program was slow but very funny)

The polarity scores for each word in the sentence are:

["O", "programa", "era", "lento", "mas", "muito", "divertido"]
[0, 0, 0, -1, 0, 0, +1]
The word *muito* (very) is an intensifier of the amplifier kind with a modifier of +100%. In that way, after applying valence shifters the final score of each word is:

\[0, 0, 0, -1, 0, 0, +2\]

And the sentence final polarity score is \(-1 + 2 = 1\) and is therefore a sentence with positive sentiment.

### 3.3 Applying SO-CAL valence shifters to features

The SO-CAL algorithms takes an interesting approach when dealing with the semantic context of words through valence shifters. By analysing context and applying the same method to Bag-of-Words features, these features may more accurately reflect the real contribution of each term in the overall sentiment. This section details how valence shifters can be applied to and improve Bag-of-Words features.

First, we need to analyse how not taking into account the semantic context is prejudicial to our model for the task of sentiment analysis. Suppose a corpus composed of these two sentences with associated sentiment:

1. "Movies are great", positive (+1)
2. "Movies are not great", negative (-1)

The array of terms and the Bag-of-Words representation accompanied by the sentiment score for each sentence is:

1. \["Movies", "are", "great", "not"]
   (1) \([1, 1, 1, 0]\), +1
   (2) \([1, 1, 1, 1]\), -1

When estimating coefficients for the model, the only feature differentiating the two samples is the word *not* present in the negative sample. Which means the model will learn that *not* is a word that contributes towards a negative sentiment and therefore has a negative prior polarity and sentiment score. While the other
words, present in every sample of the corpus, by not contributing towards any label will be considered neutral words. However, those are wrong assumptions. The word not by itself has no negative connotation, it however gives a negative connotation to another word next to it that usually has a positive one: great.

The same features with valence shifters applied, specifically switch negation, would yield:

["Movies", "are", "great", "not"]

(1) [1, 1, 1, 0], +1
(2) [1, 1, -1, 1], -1

The model would still learn that not contributes towards the negative sentiment in this corpus, but it would most importantly learn that great negatively contributes towards a negative sentiment. Which means it’s considered a positive term.

The fact that semantic context affects how words contribute towards a sentiment label is true for all presented valence shifters. Therefore, it is possible to improve our model for sentiment analysis by applying those rules as a preprocessing step for our features.
Chapter 4

Lexicon Evaluation

The hypothesis of a sentiment lexicon generated from a logistic regression model needs to be evaluated beyond the manual observation of the output. Apart from size there are no other discrete metrics to evaluate the quality of a lexicon by itself. However it can be used in a lexicon-based method for sentiment analysis which can in turn have its performance evaluated as a common binary classification task. In that sense, the quality of a lexicon can be seen as directly proportional to the performance of a lexicon-based sentiment analysis task that uses it.

This evaluation process demands the use of the already mentioned pipeline of tasks. Being those tasks:

- Train a logistic regression model on top of a labeled dataset of polarized texts.
- Select terms whose logistic regression coefficients are greater than the chosen threshold.
- Build a lexicon with those terms in which polarity scores are derived from the logistic regression coefficients.
- Apply the SO-CAL method to a dataset using the generated lexicon.
- Measure how accurately the method correctly classified sentiment.

Since each of these tasks has a number of hyperparameters that can be changed and affect the lexicon quality, multiple runs with varying hyperparameters are executed in order to find the combination that yields the highest quality lexicon.
This chapter describes the datasets used, detail each hyperparameter of the process and explains how the lexicon quality is measured exposing the assumptions and choices for each of the tasks in the pipeline.

4.1 Datasets

Being the starting task of the pipeline to train a logistic regression model on top of a dataset, having datasets of texts labeled as positive and negative is essential. However, finding labeled datasets for sentiment analysis in Portuguese can be challenging since the research field is not as developed as it is in English.

Datasets are used in two different stages of the pipeline. First, to train a logistic regression model and generate a sentiment lexicon. Lastly, to test the generated lexicon quality with a sentiment analysis algorithm. Having at least two sources of textual data from different domains (distinct themes, formality, format and/or structure) is desirable since it makes it possible to test the generated lexicon against data from both the same as well as from a different context.

Within sentiment analysis the most used source of data are online reviews[4]. Different sources of data may have no conceptual differences, but they can impose different degrees of difficulty to deal with. Reviews inherently imply the opinion of the author, contain little irrelevant information and frequently have an associated rating that can be converted to a polarity. Whereas in forum discussions users can discuss about anything and interact with one another, which makes it harder to work with. Different domains can also present varying degrees of difficulty. Political and social discussions in general are much harder than opinions about product and services due to complex topics, the use of sarcasms and ironies [4].

Reviews are the most available source and one of the easiest targets to work with in sentiment analysis. As such they were this project’s choice for labeled text. The two collection of labeled reviews used in this project will be presented next.
4.1.1 Book reviews

The first dataset is a collection of book reviews in Portuguese with manually annotated polarities. It was first presented and made public by Freitas et al. in 2013 [52]. In addition to whole reviews ratings there is a polarity associated to each sentence of the review.

Even with a general positive or negative score a review can be composed of sentences with divergent sentiments. For instance, an author could start by describing bad aspects of a book and by the end praise its qualities concluding it is overall a good book. A model trained on top of a corpus with opposing sentiments in the same entry, when compared to a corpus in which entries have a unique sentiment throughout their texts, can have more difficulty learning sentiment associated to each feature, or term. Therefore, only the sentence level polarities were used as they narrow the scope of the sentiment to a smaller body of text reducing the possibility of opposing sentiments in the same entry or text.

This dataset is composed of 1600 reviews from 14 different books. Since neutral sentences are not of interest to this project they were discarded. Table 4.1 describes the dataset with some statistical measures.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of positives instances</td>
<td>2685</td>
</tr>
<tr>
<td>No. of negative instances</td>
<td>561</td>
</tr>
<tr>
<td>Average number of words</td>
<td>18.63</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>17.10</td>
</tr>
</tbody>
</table>

Table 4.1: Book reviews dataset statistics.

The language used in the reviews are more formal than the typical Internet review. Some examples of polarized phrases can be seen below:

“Um livro muito bom que retrata a cruel realidade dos garotos de rua da Bahia da década de 30.” (A very good book that portrays the cruel reality of street kids of Bahia in the 30s).
“Stephenie não soube criar clímax e falas decentes.” (Stephenie didn’t know how to create a climax and decent lines).

4.1.2 Hotel reviews

This dataset is composed of hotel reviews in Portuguese from TripAdvisor website. TripAdvisor provides user generated reviews of travel-related content. Those reviews are rated with 1 to 5 stars, being 1 the worst and 5 the best experience. Ratings were converted to polarities as follows: ratings 1 and 2 are considered negative, ratings 4 and 5 are positive and rating 3 is neutral and discarded from the dataset. This method was described in Bing Liu book on sentiment analysis [4].

Hotel reviews were crawled from the website in May 2015. Neutral reviews were also disregarded and Table 4.2 describes this dataset.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of positives instances</td>
<td>128</td>
</tr>
<tr>
<td>No. of negative instances</td>
<td>295</td>
</tr>
<tr>
<td>Average number of words</td>
<td>99.42</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>87.43</td>
</tr>
</tbody>
</table>

Table 4.2: Hotel reviews dataset statistics.

Reviews from TripAdvisor are slightly less formal than the book reviews from the other dataset. Some examples can be seen below:

“Ótima opção de pernoite para quem faz conexão no aeroporto de Guarulhos, inclusive com transfer para o aeroporto. Quartos limpos, organizados e confortáveis. Funcionários muito solícitos. Hotel com excelente padrão.” (An excellent overnight stay option for those on a connection flight in Guarulhos airport, including an airport transfer. Clean, organized and comfortable rooms. Very solicit employees. A golden standard hotel).

“Decadente, nojento. Não tenho palavras para descrever por isso posto as fotos. Veja com seus próprios olhos. Não sei como a prefeitura deixa uma espelunca dessa funcionar.” (Decadent, disgusting. I don’t know how to express it in words so
I posted photos. See it with your own eyes. I don’t know how the city government allows this fleabag to keep running).

4.2 Logistic Regression model hyperparameters

When training a logistic regression model there are a number of hyperparameters that can have different values. This section will describe a set of these parameters that were chosen to be varied and have their impact on the generated lexicon analysed.

4.2.1 SO-CAL valence shifters

The already described valence shifters can be applied as a preprocessing step for the logistic regression features. The application or not of this method needs to be analysed in order to reach a conclusion about whether or not it improves the lexicon quality.

4.2.2 Valence shifters maximum number of steps

When a valence shifter appear in a text it affects neighbouring words polarities. The valence shifter modifiers are applied to adjacent word’s polarities until a clause break is hit or a maximum number of steps has been reached. Since this maximum can be set to different values, the performance behaviour should be analysed when changing them.

4.2.3 Class weights

In a dataset with positively and negatively labeled texts, the number of instances in each class may not be the same, which can skew the model towards the highest frequency class. The model will assign most instances to the prevalent class and will incorrectly classify whenever an instance from the rarer class appears. However, it’s possible to balance the difference in each class frequency by assigning distinct weights to each class [53]. These class weights are used in the logistic regression cost function [54] to penalize differently classes that occur with different
frequencies. Weights are inversely proportional to the frequency of the class and can be represented by the equation:

\[ weight(C) = \frac{n}{m \cdot \text{frequency}(C)} \]

Being \( C \) the class being weighted, \( n \) the total number of samples in the dataset, \( m \) the total number of classes and \( \text{frequency}(C) \) the number of occurrences of the class \( C \) in the dataset.

Using balanced class weights in the logistic regression model should be essential when trying to maximize for most binary classification performance metrics without skewing results in unbalanced datasets, which is the case for both chosen datasets. Whether or not it improves performance will be analyzed in the results chapter.

### 4.2.4 Stop Words

Stop Words usually refer to the most common words in a language [43]. They are terms that don’t contain important significance in a number of natural language processing tasks. In Portuguese words like \textit{dos}, \textit{mais}, \textit{mesmo} and \textit{tenho} (of, more, same and have) are considered stop words and are not of use in most natural language processing tasks. Choosing to remove stop words from our logistic regression model can modify the final lexicon making it a good candidate for analysis. The removal of stop words occurs after the SO-CAL valence shifters rules are applied so that the rules aren’t affected by it. The set of stop words used in this project is composed of 203 terms.

Since most stop words don’t have a semantic meaning or sentiment associated and we are only interested in polarized words to build a sentiment lexicon, choosing to remove them from the model may improve the lexicon quality.
4.3 Lexicon extraction parameters

4.3.1 Threshold

Defining a threshold is a challenging task as increasing it, besides removing neutral words, will reduce the lexicon size. Which may have a negative impact on accuracy as well. In that way, threshold has to be tested with many values in order to find a value that optimizes the sentiment classification task performance.

4.3.2 Polarity score conversion

There are a two options on how the conversion from logistic regression coefficient to polarity score can happen. First, the raw value of the coefficient can be used as a polarity score. Second, the coefficient can be converted into a binary value, -1 or 1, according to its sign. By analyzing both we can reach a conclusion about whether or not using continuous values for polarity scores in our lexicon improves the sentiment analysis task performance.

4.4 SO-CAL parameters

4.4.1 Positive bias normalization

Although positive bias normalization, or amplifying negative words polarity scores, can improve performance in a typical lexicon, the logistic regression model should already take into account the natural positive bias when estimating word’s coefficients. Using this normalization can perhaps degrade the performance in this case. This intuition will be analyzed in the results chapter.

4.5 Word stemming

Stemming is the process of reducing inflected or derived words to their word stem, base or root. This process turns for example, all possible conjugations of a verb into a single base word that represents them. For example, the adjective *impressionante* (impressive), the verb *impressionar* (to impress) and the other adjective
impressionável (impressionable) are all stemmed to the same stem impression. The chosen stemming algorithm for the Portuguese language used in this project was the RLSP stemmer presented by Alvares et al. [55].

Since datasets are used in two different stages of the pipeline, the stemming of words needs to take place in both of them, or a lexicon of stems would end up being used in a dataset with full words, leading to an almost zero match of words.

Stemming can have a great impact in a number of natural language processing methods, including sentiment analysis. Therefore, its effect in the final performance is analysed.

4.6 Performance measurement

Measuring the quality of the generated lexicon is the final product of the evaluation process and choosing the correct metrics can be key to produce the expected results. In order to attest the lexicon quality we need to measure the performance of the SO-CAL sentiment analysis method using the generated lexicon. A number of ways to measure the quality of a binary classification task have been presented in the literature. This section will introduce some of those metrics and analyse which ones are better for the task in hand.

Perhaps the most intuitive and most used measure is accuracy, or Rand accuracy in the context of machine learning and information retrieval. It is the proportion of correct predictions and can be defined as:

\[ ACC = \frac{TP + TN}{N} \]

Where TP is the number of true positive instances, TN the number of true negatives and N the total number of instances.

Although it can be a reliable metric when the number of positive and negative instances are balanced in the test set, it can be misleading when one of these labels outnumbers by a large margin the other one [56]. In these situations a high accuracy
doesn’t necessarily mean the algorithm is performing well, as an algorithm that only assigns to the prevalent class would also have high accuracy. Therefore, it is considered a measure biased towards the majority class [57]. Even though more metrics need to be analysed in order to arrive at a conclusion about the quality of the algorithm, accuracy will also be observed as it is one of the most used metrics in machine learning and natural language processing.

Another popular performance measure in binary classification tasks is the \( F_1 \) score [58]. It is computed by combining two other metrics: **precision**, or the number of correctly predicted positive instances divided by the total number of positive instances, and **recall**, or the number of correctly predicted positive instances divided by the total number of positive instances that should have been returned. The score is defined as the harmonic mean of precision and recall [59]. The formulas for precision, recall and \( F_1 \) score are shown below where \( TP \) is the number of true positive instances, \( FP \) the number of false positives and \( FN \) the number of false negatives.

\[
\text{precision} = \frac{TP}{TP + FP}
\]
\[
\text{recall} = \frac{TP}{TP + FN}
\]
\[
F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

The \( F_1 \) score, along with precision and recall, is not a satisfactory metric as it doesn’t take into account the correctly labeled negative instances [58]. It may behave well in cases where there is only one class of interest, such as document search and other information retrieval tasks. However, that is not the case for sentiment analysis where both positive and negative classes have equal importance. Making this metric unsuited to measure performance in this particular task and in a number of others tasks in machine learning and natural language processing [57][58].

Finally, there is the **Matthew Correlation Coefficient** introduced by biochemist Brian W. Matthews in 1975 [60]. The coefficient is the geometric mean
of two other metrics: **Informedness** and **Markedness**. Which are considered renormalized versions of recall and precision that discount the chance component [61], making the coefficient unbiased and a good choice for analysing the performance of machine learning tasks [57][61]. It can be defined by the formula:

\[
MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}
\]

Being TP the number of true positive, TN true negative, FP false positive and FN false negative instances.

In this project Matthews Correlation Coefficient was the metric to be maximized in the search of a combination of parameters that yielded the highest quality lexicon. Accuracy was also observed when comparing lexicons due to its relevance in academic literature.

### 4.7 Train, validation and test

This section will explain how the described datasets, hyperparameters and measures come together in the pipeline to build a lexicon evaluation process.

The evaluation process can be separated in performance tests against data from the same domain and against data from a different one. Being larger and more specific due to sentence-level polarities, the book reviews corpus has been chosen as the main dataset. The collection of hotels reviews serves as the dataset from a different domain.

#### 4.7.1 Same domain test

In order to evaluate performance on the same domain, the book reviews corpus was split into two sets on an 80% / 20% proportion in a random manner. The first set, namely the training set, is used for the logistic regression training and consequent lexicon generation. Then the lexicon’s quality is measured by using it to run the SO-CAL method that classifies data in the remainder 20%, the test set. Finally, the method’s performance on correctly classifying the reviews is measures
by the Matthews Correlation Coefficient (MCC) and compared to other publicly available Portuguese lexicons.

However, since hyperparameters can affect the overall performance, the combination of them that maximizes MCC has to be found. In order to hyperoptimize, or find the best combination of hyperparameters, the training set was further split into a training and a validation, or held-out data, set. For each hyperparameter variation a 5-fold cross-validation [62] was used to train and validate a specific combination of hyperparameters. After numerous runs, the optimal combination is used to generate a sentiment lexicon. The influence of each hyperparameter in the performance is analyzed.

After the split, the book reviews’ distribution of negative and positive instances changed. Table 4.3 describes how they are distributed in the training set after the split, and table 4.4 describes the test set.

<table>
<thead>
<tr>
<th>No. of positives instances</th>
<th>2145</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of negative instances</td>
<td>451</td>
</tr>
</tbody>
</table>

Table 4.3: Book reviews training dataset sentiment distribution.

<table>
<thead>
<tr>
<th>No. of positives instances</th>
<th>540</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of negative instances</td>
<td>110</td>
</tr>
</tbody>
</table>

Table 4.4: Book reviews test dataset sentiment distribution.

### 4.7.2 Other domain test

Performance on another domain was evaluated by testing the lexicon created by the previously mentioned method against the hotel reviews dataset. However, this lexicon’s choice of hyperparameters are optimizing for same domain classification and it may not generalize well to other domains. There is probably a different combination of hyperparameters that maximizes MCC on the hotels reviews dataset. It would be interesting to test a lexicon generated from this combination.
The same method of varying hyperparameters in multiple runs of the pipeline was used to maximize MCC, but this time for the other domain corpus, the collection of hotel reviews. The hyperoptimization and test was done on top of the same data, the test set. After the optimal hyperparameters are obtained, a lexicon is generated and its performance is compared to other lexicons in the hotel reviews dataset. The impact of each individual hyperparameter on MCC is also analysed.

These two different tests should evaluate how the generated sentiment lexicon behave in different domains and in which way each hyperparameter can impact the lexicon. The next chapter will present an analysis of these impacts along with measures of performance and the lexicons performance comparison.
Chapter 5

Results

A number of performance measures were taken by using the pipeline and varying the hyperparameters and options described in chapter 4. In order to find the hyperparameters that maximized the Matthews Correlation Coefficient, or MCC, the impact of each parameter on MCC is analyzed and exhibited for both the book reviews training set, with a 5-fold cross-validation, and the other domain dataset, namely the collection of hotel reviews. Then the optimal combination of hyperparameters is used to generate a lexicon whose performance is compared to other publicly available Portuguese sentiment lexicons in two tests: one with the book reviews test set and another with the hotel reviews dataset.

When showing the results some abbreviations were used to simplify the exhibition. CV stands for cross-validation, MCC is Matthews Correlation Coefficient and ACC is accuracy. Book reviews CV refers to the book reviews training set using 5-fold cross validation. Hotel reviews refers to the entire collection of hotel reviews.

5.1 Logistic Regression model hyperparameters

5.1.1 SO-CAL valence shifters

Applying valence shifters to the features vector of the logistic regression model yields a higher MCC in most cases compared to when no valence shifters are applied. However, when stemming is used on the hotel reviews set the opposite happens. No logical conclusion could be found for this fact but maybe it is some collateral effect...
from assuming distinct words with the same stem share the same sentiment.

<table>
<thead>
<tr>
<th>Use valence shifters</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>Book reviews stemmed</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>Hotel reviews stemmed</td>
<td>0.73</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Table 5.1: Highest MCCs obtained for each different test.

5.1.2 Valence shifters maximum number of steps

Valence shifters maximum number of steps was varied from 1 to 15 steps with word’s stemming applied, where 1 step means that only adjacent words are affected. It can be seen in Table 5.2 that for the training set values around 3 have higher MCCs whereas in another domain lower values perform better. This can be explained because lower values approximate to not applying valence shifters at all which performs better in the stemmed hotel reviews dataset. Oddly MCC values increase with a considerably large number of steps (15) in the same dataset.

5.1.3 Class weights

The presence of class weights to balance disparate class frequencies has slightly improved the MCC values and should be used to generate a higher quality lexicon. Table 5.3 exhibit those values.

5.1.4 Stop Words

As table 5.4 shows, the presented intuition holds true and removing stop words increased performance when classifying novel data. Especially in data from another domain, increasing as much as 4% of the MCC value.
<table>
<thead>
<tr>
<th>Max. steps</th>
<th>Book reviews CV</th>
<th>Hotel reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.44</td>
<td>0.71</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>0.43</td>
<td>0.69</td>
</tr>
<tr>
<td>5</td>
<td>0.40</td>
<td>0.70</td>
</tr>
<tr>
<td>6</td>
<td>0.42</td>
<td>0.61</td>
</tr>
<tr>
<td>7</td>
<td>0.41</td>
<td>0.69</td>
</tr>
<tr>
<td>8</td>
<td>0.41</td>
<td>0.64</td>
</tr>
<tr>
<td>9</td>
<td>0.42</td>
<td>0.68</td>
</tr>
<tr>
<td>10</td>
<td>0.42</td>
<td>0.66</td>
</tr>
<tr>
<td>11</td>
<td>0.41</td>
<td>0.65</td>
</tr>
<tr>
<td>12</td>
<td>0.41</td>
<td>0.64</td>
</tr>
<tr>
<td>13</td>
<td>0.41</td>
<td>0.66</td>
</tr>
<tr>
<td>14</td>
<td>0.42</td>
<td>0.68</td>
</tr>
<tr>
<td>15</td>
<td>0.41</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 5.2: MCC for different maximum number of steps in both datasets with stemmed words.

<table>
<thead>
<tr>
<th>Use balanced class weights</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.76</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 5.3: Highest MCCs for balanced class weights in cost functions.

<table>
<thead>
<tr>
<th>Remove stop words</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.77</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Table 5.4: Highest MCCs for stop words removal option in different datasets.
5.2 Lexicon extraction parameters

5.2.1 Threshold

Threshold influences the size and in what extent words are allowed or not as part of the lexicon. Not applying threshold at all and using the whole vocabulary to generate the lexicon yielded a better result in the training dataset, since many polarized domain specific words and terms can be included in the lexicon. However, when testing in a different domain, a larger threshold value performed better. This can be explained by the same fact. The presence of domain specific terms in the lexicon can have a negative impact because these terms may not have the same meaning and sentiment in other domains. Increasing the threshold value should produce a more general purpose lexicon. Table 5.5 shows how MCC changes with different threshold values.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Book reviews CV</th>
<th>Hotel reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.45</td>
<td>0.63</td>
</tr>
<tr>
<td>0.1</td>
<td>0.44</td>
<td>0.65</td>
</tr>
<tr>
<td>0.2</td>
<td>0.42</td>
<td>0.66</td>
</tr>
<tr>
<td>0.3</td>
<td>0.40</td>
<td>0.65</td>
</tr>
<tr>
<td>0.4</td>
<td>0.36</td>
<td>0.60</td>
</tr>
<tr>
<td>0.5</td>
<td>0.32</td>
<td>0.65</td>
</tr>
<tr>
<td>0.6</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>0.7</td>
<td>0.26</td>
<td>0.71</td>
</tr>
<tr>
<td>0.8</td>
<td>0.24</td>
<td>0.76</td>
</tr>
<tr>
<td>0.9</td>
<td>0.18</td>
<td>0.62</td>
</tr>
<tr>
<td>1.0</td>
<td>0.12</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Table 5.5: MCC values for different thresholds in both datasets.
5.2.2 Polarity score conversion

The polarity score of a term can be retrieved from the logistic regression model in two ways: using the raw coefficient as a polarity value or converting the coefficient to a binary value, +1 if the coefficient is positive, -1 if it is negative.

Using raw continuous values as polarity scores improved performance in a considerable way in both datasets as can be seen in table 5.6.

<table>
<thead>
<tr>
<th></th>
<th>Raw coefficient</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.40</td>
<td>0.17</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.77</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Table 5.6: Highest MCCs for binary and raw polarity score conversion options in both datasets.

5.3 Word stemming

Stemming occurs in the logistic regression features used to generate the lexicon as well as in the validation and test datasets. In the book reviews training set stemming improved performance, however in the hotel reviews set the opposite happened. This can perhaps be explained by the fact that, in the book reviews domain, words with the same stem probably have the same sentiment associated. However, when crossing to another domain, different words, or even the same ones, that resulted in the aforementioned stem can have distinct or opposing sentiments associated, degrading the performance.

<table>
<thead>
<tr>
<th></th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.74</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 5.7: Highest MCC results on different datasets for stemming words option.
5.4 SO-CAL parameters

5.4.1 Positive bias normalization

Adjusting negative words to have a higher score increases performance when testing against data from another domain. However, when used in the same domain, it lowers MCC.

The decreasing in performance on same domain data may be explained by the fact that the logistic regression model already takes into account the relevance and rarity of each term’s sentiment, expressed by the continuous value in the coefficient. Since most terms in this domain are already covered by the lexicon, when classifying novel data in the same domain the negative terms that appear are already in the lexicon with their rarity reflected on their polarity score. Applying a bias correction is redundant and ends up degrading performance.

Whereas in a different domain negative words that are not part of the lexicon appear more frequently and don’t have their rarity taken into account. The coefficients of negative words in the lexicon are not sufficient to reflect the rarity of negative words in both domains, so using a positive bias normalization yielded better results. Table 5.8 shows these results.

<table>
<thead>
<tr>
<th>Normalize pos. bias</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews CV</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>Hotel reviews</td>
<td>0.76</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 5.8: Highest MCC results on different datasets for positive bias normalization option.

5.5 Optimal hyperparameters combination

After analyzing individually how each hyperparameter affects the generated lexicon in terms of performance, an optimal combination of hyperparameters that maximize MCC was obtained for each dataset, the book reviews training set and the
hotel reviews dataset. Table 5.9 shows the combination of parameters that better performed when tested against the book reviews training set, with cross-validation, and when testing against the other domain set, namely the hotel reviews dataset. The table also show the MCC and accuracy for each of them.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Book reviews CV</th>
<th>Hotel reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use valence shifters</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>Max. steps</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Use balanced class weights</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>Remove stop words</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Polarity score conversion</td>
<td>Raw coef.</td>
<td>Raw coef.</td>
</tr>
<tr>
<td>Stem words</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>Normalize pos. bias</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>MMC</td>
<td>0.45</td>
<td>0.78</td>
</tr>
<tr>
<td>ACC</td>
<td>0.81</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table 5.9: Optimized combination of hyperparameters for each dataset along with MMC and accuracy.

The hyperparameters that differentiate the two lexicons is the threshold value, which is directly related to how fitted to data the generated lexicon will be, the use of valence shifters and the removal of stop words as already noted in the individual hyperparameters analysis.

5.6 Comparison against other sentiment lexicons

Although natural language processing as a whole is not as actively developed in Portuguese as it is in English, some of the research effort in the area developed and turned public sentiment lexicons for the Portuguese language.

Oplexicon [63] is a lexicon of 32192 terms. It is the larger publicly available lexicon for the Portuguese language. The terms are emoticons, hashtags and words with
their respective POS tags and the polarities are -1 for negative sentiment bearing words, +1 for positive ones and 0 for neutral words.

Sentilex [64] is comprised of mainly adjectives in a total of 7014 terms classified as positive (+1) or negative (-1). In addition to individual words it also contains a number of phrases. There are also neutral words in the lexicon but they are a small part of it.

The ReLi lexicon [52] is a manually annotated sentiment lexicon that was built on top of the same ReLi book reviews dataset used to generate our lexicon. It is comprised of 519 polarized words accompanied by their POS tags and polarity scores of -1 or +1. No neutral words are present in it. Being built on top of the same data as our lexicon, it would be expected that both produced a lexicon with similar performance.

None of the existing sentiment lexicons in Portuguese has any indicator on the degree or intensity of the associated sentiment. They are simply labeled as positive or negative, and in some cases neutral. The fact that this project’s generated lexicon assigns polarity scores with varying degrees of intensity to terms can pose itself as an advantage over the other ones.

Table 5.10 shows some structural information regarding the sentiment lexicons used in this project. Book lexicon is the lexicon generated from the book reviews corpus whose hyperparameters are optimized by testing against the same dataset using cross-validation. Hotel lexicon is also generated from the book reviews corpus but its hyperparameters were optimized by testing against the hotel reviews dataset. In both lexicons stemmed terms are used since they presented a better performance.

Tables 5.11 compares the performance of the SO-CAL method using each sentiment lexicon when tested against the book reviews test set, it also presents the lexicons size, only considering polarized terms. Table 5.12 compares performance in tests against the hotel reviews dataset.
<table>
<thead>
<tr>
<th>Lexicon</th>
<th>No. of positive terms</th>
<th>No. of negative terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book lexicon</td>
<td>2253</td>
<td>130</td>
</tr>
<tr>
<td>Hotel lexicon</td>
<td>974</td>
<td>180</td>
</tr>
<tr>
<td>Oplexicon</td>
<td>8620</td>
<td>14569</td>
</tr>
<tr>
<td>Sentilex</td>
<td>1548</td>
<td>4598</td>
</tr>
<tr>
<td>ReLi lexicon</td>
<td>329</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 5.10: Number of positive and negative terms in each sentiment lexicon.

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Size</th>
<th>ACC</th>
<th>MCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book reviews test set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book lexicon</td>
<td>3227</td>
<td>0.83</td>
<td>0.52</td>
</tr>
<tr>
<td>Hotel lexicon</td>
<td>310</td>
<td>0.66</td>
<td>0.30</td>
</tr>
<tr>
<td>Oplexicon</td>
<td>22273</td>
<td>0.53</td>
<td>0.08</td>
</tr>
<tr>
<td>Oplexicon with stemming</td>
<td>8749</td>
<td>0.37</td>
<td>0.02</td>
</tr>
<tr>
<td>Sentilex</td>
<td>6132</td>
<td>0.37</td>
<td>0.02</td>
</tr>
<tr>
<td>Sentilex with stemming</td>
<td>5163</td>
<td>0.47</td>
<td>0.09</td>
</tr>
<tr>
<td>ReLi lexicon</td>
<td>509</td>
<td>0.52</td>
<td>-0.02</td>
</tr>
<tr>
<td>ReLi lexicon with stemming</td>
<td>454</td>
<td>0.69</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table 5.11: Performance and size of each lexicon when tested against the book reviews test set.

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Size</th>
<th>ACC</th>
<th>MCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel reviews dataset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book lexicon</td>
<td>3227</td>
<td>0.71</td>
<td>0.51</td>
</tr>
<tr>
<td>Hotel lexicon</td>
<td>310</td>
<td>0.90</td>
<td>0.77</td>
</tr>
<tr>
<td>Oplexicon</td>
<td>22273</td>
<td>0.86</td>
<td>0.67</td>
</tr>
<tr>
<td>Oplexicon with stemming</td>
<td>8749</td>
<td>0.78</td>
<td>0.50</td>
</tr>
<tr>
<td>Sentilex</td>
<td>6132</td>
<td>0.82</td>
<td>0.59</td>
</tr>
<tr>
<td>Sentilex with stemming</td>
<td>5163</td>
<td>0.80</td>
<td>0.49</td>
</tr>
<tr>
<td>ReLi lexicon</td>
<td>509</td>
<td>0.70</td>
<td>0.47</td>
</tr>
<tr>
<td>ReLi lexicon with stemming</td>
<td>454</td>
<td>0.71</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 5.12: Performance and size of each lexicon when tested against the hotel reviews dataset.
The comparison showed that the generated lexicon had the best performance by far when tested on data from the same domain it was trained on. As expected that same lexicon didn’t perform quite as well in another domain but it managed to stay around the average performance of other tested general purpose lexicons.

When optimized for another domain corpus, the generated lexicon had the best performance in hotel reviews. Which indicates that a correct manipulation of hyper-parameters can generate an efficient general purpose lexicon, at least for the domain analyzed in this project. Overall, the performance was better on hotel reviews dataset across all lexicons, revealing that it is an easier dataset to classify.

The generated lexicons were small in size when compared to others. However, if a larger amount of data is available the vocabulary size should grow and consequently the lexicon size.

Oplexicon performed well on hotel reviews, which can be due to the fact that hotel reviews are more informal than book reviews. Since Oplexicon was based on Twitter posts the formality of language may be similar to hotel reviews. Sentilex, as well as all other lexicons did not perform well on the book reviews test set. Even the ReLi lexicon, that was built on top of the same book reviews as the generated lexicon performed poorly on this dataset.
Chapter 6

Conclusion

Using a logistic regression model to generate a sentiment lexicon proved to be a reliable way of creating a lexicon. When optimized for an tested on the same domain, and when optimized and tested on a different domain, the generated lexicon’s performance is superior to all other Portuguese sentiment lexicons publicly available for the datasets analysed. As a downside, like other supervised methods, this kind of lexicon requires a labeled dataset, which may not always be an available option.

The generated lexicon is corpus-based and domain specific, which means that it can capture a sentiment for a word that only exists in a specific context. This is desirable if the interest relies on classifying sentiment of texts in the same domain, but when working in different domains this specific sentiment may lead to misleading results. However, by using the threshold value, an attempt to build a more general purpose lexicon can be made. In the tested case, using higher thresholds in combination with some other hyperparameters changes, the observed performance on data from another domain was higher than other general purpose sentiment lexicons.

This project also validated some intuitions about parameters that could improve or undermine the lexicon quality. For instance, using valence shifters as a preprocessing step for features proved to be an effective way of raising the quality of the lexicon. Using the model’s coefficients as polarity scores was also a measure that improved performance. Usually binary values are used to express sentiment in manually annotated lexicons for simplicity. Having continuous values instead for the polarity scores increased performance when compared to simple binary labels in all
other tested lexicons.

6.1 Future Work

To further validate the hypothesis and extend it, a larger number of labeled datasets can be used both for the generation as a training set as well as for the evaluation process. Another possibility in the attempt to improve the lexicon is to only use words from a specific part-of-speech type in the logistic regression model, only adjectives and nouns for example, instead of using all terms to train the model. Spelling correction could be used as a preprocessing step for features. The generated lexicon could also be expanded by dictionary-based methods and have any discrepancy fixed in a one time manual inspection.

As extensions to SO-CAL’s valence shifters more sophisticated semantic rules can be created and a higher number of modifiers values can be tested in an attempt to find optimal ones. Locutions and expressions can be accepted as valence shifters.

The logistic regression model was used in this project to extract coefficients but other supervised learning algorithms, like Support Vector Machines, could be used as long as they associate a numeric value to each feature that this value somehow correlates to the sentiment attribution.

If a huge number of labeled datasets are available, building a general purpose lexicon can be attempted. Being those labeled datasets from different domains, when training the model only relevant terms from all domains would have a high coefficient and therefore have a prior polarity necessary in the process of making a general purpose sentiment lexicon.
Bibliography


